
Optimizing Multiple Object Tracking with Graph

Neural Networks on a Graphcore IPU

by

Mustafa Orkun Acar

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

January 17, 2024

Optimizing Multiple Object Tracking with Graph Neural Networks on a

Graphcore IPU

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Mustafa Orkun Acar

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Dr. Didem Unat (Advisor)

Prof. Dr. Yücel Yemez

Asst. Prof. Dr. Ayşe Yılmazer

Date:

ABSTRACT

Optimizing Multiple Object Tracking with Graph Neural Networks on a

Graphcore IPU

Mustafa Orkun Acar

Master of Science in Computer Science and Engineering

January 17, 2024

This thesis presents a comprehensive study focused on enhancing the efficiency of

MOT using GNNs, specifically by leveraging the capabilities of Graphcore’s IPUs.

In the realm of real-time applications such as autonomous driving, robotics, and

surveillance, the ability of GNNs to effectively model complex interactions between

objects is crucial. However, the computational intensity of GNNs, particularly in

key message passing operations, poses significant performance bottlenecks.

Initially, I discuss the subtleties of adapting an existing PyTorch model to Ten-

sorFlow and tailoring it for IPU execution. Then, a comparative analysis was con-

ducted between IPU and GPU by running the model on both platforms. This phase

focused on evaluating the baseline performance of the model on these two computing

architectures, using metrics such as average training and inference time per epoch.

The findings from this phase provided a foundational understanding of the strengths

and limitations inherent to each platform in handling the model training.

Subsequently, the study advanced to the implementation of optimizations spe-

cific to the IPU, focusing on enhancing the model’s message passing operations

that are vital for the efficiency of GNNs. The effects of these targeted IPU-centric

optimizations, along with adjustments made to IPU-specific configurations, were

evaluated.

iii

ÖZETÇE

Graphcore IPU üzerinde Grafik Sinir Ağları ile Çoklu Nesne Takibini

Optimize Etme

Mustafa Orkun Acar

Bilgisayar Bilimleri ve Mühendisliği, Yüksek Lisans

17 Ocak 2024

Bu tez, Çoklu Nesne Takibi’nin verimliliğini Grafiksel Sinir Ağları kullanarak,

özellikle Graphcore’un IPU’sunun yeteneklerinden yararlanarak artırmaya odak-

lanan kapsamlı bir çalışmayı sunmaktadır. Otonom sürüş, robotik ve gözetleme gibi

gerçek zamanlı uygulamalar alanında, Grafiksel Sinir Ağları’nın nesneler arasındaki

karmaşık etkileşimleri etkili bir şekilde modelleme yeteneği önem taşımaktadır. An-

cak, özellikle mesaj iletim operasyonlarında, Grafiksel Sinir Ağları’nın hesaplama

yükü, önemli performans darboğazlarına yol açmaktadır.

Başlangıçta, PyTorch ile geliştirilmiş mevcut bir Çoklu Nesne Takibi modelini

TensorFlow’a uyarlamak ve IPU üzerinde çalıştırmak için yapılması gereken özelleştirmeler

incelenmektedir. Ardından, model her iki platformda çalıştırılarak IPU ve GPU

arasında karşılaştırmalı bir analiz yapılmıştır. Bu aşama, ortalama eğitim ve tah-

minleme süresi gibi metrikler kullanarak bu iki mimari üzerinde modelin temel

performansını değerlendirmeye odaklanmıştır. Bu aşamada elde edilen bulgular,

her iki platformun model eğitimi için güçlü yönlerini ve sınırlamalarını anlamamızı

sağlamıştır.

Sonrasında, çalışma, Grafiksel Sinir Ağları’nın verimliliği için hayati öneme sahip

olan mesaj iletim operasyonlarını geliştirmeye odaklanarak, IPU’ya özgü optimiza-

syonların uygulanmasına ilerlemiştir. Bu amaç doğrultusunda IPU tabanlı optimiza-

syonların etkileri, IPU’ya özgü yapılandırmalarla birlikte değerlendirilmiştir.

iv

ACKNOWLEDGMENTS

I extend my deepest gratitude to my advisors, Prof. Didem Unat and Prof.

Fatma Güney, for their invaluable guidance, support, and enriching mentorship

throughout this research journey. I am truly grateful for the privilege of being

under your mentorship.

To my wife, your encouragement, understanding, and patience have been my

pillar of strength. Your support has made this academic pursuit possible.

Heartfelt thanks to my family for their constant encouragement. Your support

has been a source of motivation and strength.

Grateful to Simula Research Laboratory, for granting access to the eX3 HPC

cluster for IPU and GPU access. Special thanks to Graphcore for their technical

support and assistance throughout the course of my research.

I acknowledge with appreciation the funding that this project has received from

the European High-Performance Computing Joint Undertaking under grant agree-

ment No 956213. Additionally, the project has received support from the Turkish

Science and Technology Research Centre under Grant No 120N003.

v

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Abbreviations xii

Chapter 1: Introduction 1

1.1 Motivation and Contributions . 1

1.1.1 The Growing Popularity of GNNs and their significance in

Multiple Object Tracking Applications 2

1.1.2 The Advantages of using an IPU for GNNs 3

1.1.3 Summary of related work . 4

1.1.4 Solution and contributions . 5

1.2 Thesis Organization . 6

Chapter 2: Background 8

2.1 Graph Neural Networks (GNNs) . 8

2.1.1 The Structure of GNNs . 9

2.1.2 Common Operations in GNNs 9

2.1.3 Message Passing Neural Networks (MPNN) 11

2.1.4 Challenges of Utilizing GNNs 11

2.2 Multiple Object Tracking . 13

2.2.1 Importance of Multiple Object Tracking 14

2.2.2 Challenges in Multiple Object Tracking 16

2.3 Graphcore IPU . 17

2.3.1 Structure of IPU . 17

vi

2.3.2 Memory Architecture . 19

2.3.3 Computing Model . 20

2.3.4 IPU Machine . 21

2.3.5 IPU Programming . 21

2.3.6 Host to Device Communication in IPU 23

2.3.7 Using DL Frameworks with IPU 24

2.3.8 Profiling IPU programs . 24

Chapter 3: Literature Review 27

3.1 Multiple Object Tracking Methods 27

3.2 GNNs . 29

3.2.1 GNN Methods for Object Tracking 30

3.2.2 GNN Methods on GPU . 32

3.2.3 GNN Methods on IPU . 34

3.3 Comparing IPU and GPU . 34

Chapter 4: Methodology 36

4.1 Implementation of the MOT Neural Solver in TensorFlow for IPU . . 37

4.1.1 Creation of graph inputs from MOT dataset 39

4.1.2 Data Loading . 41

4.1.3 Model Structure . 47

4.1.4 Training Loop Setup . 50

4.2 Adapting Code for IPU: Implementation Changes and Optimization

Strategies . 51

4.2.1 Optimization of the GNN Message Passing Process 54

4.3 Training . 57

Chapter 5: Experiments and Results 59

5.1 Dataset and Testbed (Simula machines) 59

5.2 Metrics for Evaluation . 60

5.2.1 ML Performance Comparison: IPU vs. GPU 60

vii

5.2.2 Computing Performance Comparison: IPU vs. GPU 60

5.3 Performance Comparison: MOT Neural Solver vs Our Model 60

Chapter 6: Conclusion and Future Work 71

Bibliography 73

viii

LIST OF TABLES

4.1 Message Passing Network. The layer count and input/output dimen-

sions are provided for each MLP. ”FC” indicates a fully connected

layer. 48

4.2 Classifier MLP. Applies binary classification to edges based on edge

features into active or inactive edges. 49

5.1 Processor specifications of Graphcore GC200, NVIDIA Tesla V100-

SXM3 and A100 SXM gathered from [Shekofteh et al., 2023], [Graph-

core, 2020] . 59

5.2 Model ML Performances Comparison after 100 epochs on validation

set . 61

5.3 Average train/inference time per epoch comparison of IPU using

tf.gather and grouped gather with the effect of enabling PopVision

for batch size=4. 65

ix

LIST OF FIGURES

2.1 The Graphcore Colossus™ MK2 GC200 IPU [Graphcore, 2020] 18

4.1 (a) An example graph with 4 nodes (b) The same graph represented

with 4 tensors . 40

4.2 (a) Number of edges per graph in the augmented dataset (b) Number

of edges per graph in the selected training dataset before padding and

truncation operations . 43

4.3 Graph Representation with Adjacency Matrix. A, B and C are nodes;

E1, E2, E3 and E4 are edges. For each directed edge, a 1 value is

added to the corresponding location at the matrix. 57

5.1 Train and validation loss graphs for IPU (batch size = 4) 61

5.2 (a) Comparison of average training times between IPU and GPUs as

a function of batch size. (b) Speed up ratio of GPUs and IPU as a

function of batch size. The red horizontal line represents a reference

value of 1. 62

5.3 Average training time for V100 and A100 as a function of batch size. 64

5.4 (a) Average training time comparison of IPU using tf.gather and

grouped gather for batch size=4. (b) Average inference time com-

parison of IPU using tf.gather and grouped gather for batch size=4. 66

5.5 Comparison of average training time across CPU, GPU, and IPU for

varying batch sizes (1, 2, 4, 8, 16). 67

5.6 Speed up of IPU relative to the CPU and GPU for varying batch sizes

(1, 2, 4, 8, 16). 69

5.7 Number of processed inputs per Watt for IPU and GPU V100 for

batch size=4. 70

x

xi

ABBREVIATIONS

GNN Graph Neural Networks

MOT Multiple Object Tracking

IPU Intelligence Processing Unit

DL Deep Learning

ML Machine Learning

CPU Central Processing Unit

GPU Graphics Processing Unit

TPU Tensor Processing Units

IPC Inter-Process Communication

CNNs Convolutional Neural Networks

MIMD Multiple Instruction Multiple Data

AI Artificial Intelligence

MPI Message Passing Interface

MPNs Message Passing Networks

GCNs Graph Convolutional Networks

RGNNs Recurrent Graph Neural Networks

MPNNs Message Passing Neural Networks

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

TOPS Trillion Operations Per Second

BSP Bulk Synchronous Parallel

SOT Single Object Tracking

TGNs Temporal Graph Networks

STGCN Spatio-Temporal Graph Neural Network

MLP Multilayer Perceptron

FPS Frames Per Second

xii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Motivation and Contributions

The ability to track multiple objects simultaneously in real-time is crucial for var-

ious applications, including autonomous driving, robotics, and surveillance. Graph

Neural Networks (GNN) have shown promising results in Multiple Object Tracking

(MOT) applications due to their ability to model complex relationships between

objects. However, the high computational complexity of GNNs and their depen-

dence on message-passing operations can lead to performance issues when applied

to large-scale MOT systems. This is especially true for scatter and gather opera-

tions, which are essential components of GNN-based MOT algorithms but can be

computationally expensive and challenging to optimize due to inefficient memory

access, significant communication overhead, irregular data patterns, and load im-

balance among processing units.

The primary aim of my research is twofold: i to conduct a comprehensive com-

parative analysis between current-generation GPUs and IPUs with respect to their

training and inference performance for MOT applications and ii to enhance the

efficiency of message-passing operations when executing a GNN-based MOT appli-

cation on a Graphcore Intelligence Processing Unit (IPU), with a specific emphasis

on optimizing scatter and gather operations.

The selection of IPU as the hardware for this research was based on its inherent

advantages for machine learning (ML) workloads. Computation graphs are com-

monly used to represent the structure and flow of computations of deep learning

(DL) models. These graphs enable efficient computation by organizing the compu-

tation and its order, allowing for parallelism and reducing the memory footprint.

Chapter 1: Introduction 2

However, the traditional design of GPUs, optimized primarily for 2D matrix oper-

ations, may pose limitations for certain tasks, necessitating the use of large data

batches to attain peak performance, which is a practice that may not always be

suitable and could potentially contribute to overfitting, while it’s worth noting that

small batches can offer a regularizing effect [Wilson and Martinez, 2003]. In contrast

to the Central Processing Unit (CPU) and Graphics Processing Unit (GPU), IPUs

were specifically designed to accelerate machine intelligence workloads. They offer

a distinctive architectural design that facilitates efficient massive compute paral-

lelism, working cohesively with a large memory bandwidth, which is crucial for the

processing of machine intelligence tasks.

1.1.1 The Growing Popularity of GNNs and their significance in Multiple Object

Tracking Applications

The limitations of existing models such as Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs) in handling graph data have led to the pro-

posal of GNNs [Zhou et al., 2020a, Wu et al., 2020]. GNNs have gained increasing

attention in recent years [Dwivedi et al., 2023] due to their ability to model and

analyze complex relationships between entities in a graph [Xu et al., 2018]. This has

led to numerous applications in various domains including but not limited to traffic

state prediction, user-item interaction, neural machine translation, social relation-

ship understanding, and object tracking [Li et al., 2020, Zhou et al., 2020a, Fan

et al., 2019].

An instance of the practical applications of GNNs in the domain of MOT involves

the capability to track multiple objects over time throughout a video sequence. In

this context, GNNs can be utilized to represent the connections between objects

in the spatial domain and how they develop or change over time in the temporal

domain [Li et al., 2020, Wang et al., 2021].

In addition to modeling complex relationships, one of the other key strengths

of GNNs is their ability to perform discriminative feature learning, which is the

process of learning features that are informative and relevant to a particular task

Chapter 1: Introduction 3

[Weng et al., 2020]. In the context of GNNs, discriminative feature learning involves

learning node embeddings that capture relevant information about each node in the

graph and their interrelationships.

The capacity of GNNs to model complex relationships and extract informative

features from graphs has positioned them as a desirable choice for tracking appli-

cations. By leveraging the ability to predict future movements of entities based on

their past relationships, GNNs enable efficient and effective tracking across various

domains, supporting real-time decision-making. This capability presents a signifi-

cant advantage in tracking applications, where timely and accurate predictions are

crucial for successful tracking outcomes.

In addition to their strengths in modeling complex relationships and discrimina-

tive feature learning, GNNs also offer flexibility in their architecture design. GNNs

can be designed with various types of message-passing operations, activation func-

tions, and aggregation schemes, allowing for customization and optimization for

specific tasks and datasets. This flexibility in design also enables the integration of

additional information sources, such as temporal or spatial features, to enhance the

performance of the model.

1.1.2 The Advantages of using an IPU for GNNs

IPU [Jia et al., 2019] is a completely new processor known for its MIMD (Mul-

tiple Instruction Multiple Data) architecture, which allows it to process multiple

instructions and data concurrently. By leveraging its MIMD architecture, the IPU

exhibits superior proficiency in handling sparse data structures, which are common

in numerous deep learning applications [Mohan et al., 2020].

This architecture is particularly suitable for the demands of deep learning work-

loads which involves the simultaneous processing of multiple instructions and data

points. In addition, it supports lower precision floating point operations [Louw and

McIntosh-Smith, 2021], which can accelerate deep learning models while consum-

ing less energy. These Artificial Intelligence (AI) specific features are built directly

into the hardware of IPUs, allowing them to efficiently execute deep learning work-

Chapter 1: Introduction 4

loads and achieve high levels of performance with energy efficiency [Bilbrey et al.,

2022]. The result is a powerful hardware platform that is ideal for accelerating the

development and deployment of advanced AI and machine learning models.

IPU is recognized as the ideal solution for processing GNNs due to its excellent

parallel processing capabilities, high memory bandwidth, scalability, and ability to

efficiently process sparse data, resulting in a reduced memory usage [Helal et al.,

2022]. These features make IPUs especially well-suited for handling the large and

complex graphs that are common in GNNs, with billions of nodes and edges [Moe

et al., 2022].

Real-time performance is a crucial requirement for various AI applications, in-

cluding MOT for autonomous driving. By utilizing the IPU’s parallel processing ca-

pabilities and high memory bandwidths, GNN computations can be executed with

high efficiency and speed, leading to faster training and inference. This, in turn,

can enable more responsive applications and faster decision-making, which are key

factors for achieving high performance in AI systems.

Furthermore, the scalability of IPUs is an additional advantage that makes them

suitable for processing GNNs on large-scale graphs. Graphcore’s IPU-POD sys-

tems, such as the IPU-POD16 or IPU-POD64, allow for the easy scaling of IPUs

by connecting multiple IPU chips together using high-speed interconnects. These

systems provide an efficient way to increase the processing power of IPUs and can be

used to accelerate GNN computations on graphs of varying sizes. Additionally, the

Graphcore Poplar software framework provides tools for the efficient distribution of

computations across multiple IPUs, enabling GNN computations to be scaled effec-

tively on large graphs. However, in this research, my focus is on using a single IPU

to process GNN computations.

1.1.3 Summary of related work

The paper [Brasó and Leal-Taixé, 2020] proposes a novel approach to solving the

MOT problem using Message Passing Networks (MPNs), a type of neural network

that operates on graphs. The authors argue that existing learning-based methods

Chapter 1: Introduction 5

for MOT have mainly focused on improving feature extraction, rather than directly

learning the data association step, which is a critical challenge in the MOT problem.

The authors propose a novel approach to improve the accuracy of MOT systems

by combining two tasks: learning features for MOT and providing a solution by

reasoning globally over a set of detections. To achieve this, they introduce a differ-

entiable framework based on MPNs that can directly predict the final partitions of

the graph into trajectories, without relying on existing solvers or pairwise costs. By

combining deep features into high-order information across the graph, their method

can account for global interactions among detections and learn in the natural MOT

domain. The proposed approach achieves significant improvements in both MOTA

and IDF1 on three publicly available benchmarks, demonstrating the potential for

learning in MOT to be applied to the data association step and not just feature ex-

traction. Additionally, the authors make their code available as open source, which

could be beneficial to other researchers and practitioners in the field.

1.1.4 Solution and contributions

The purpose of Graphcore’s IPU is to construct specialized hardware and associated

software tools to improve the performance of AI workloads. This research seeks

to assess the capabilities of the IPU by conducting a benchmark of a particular

MOT application. This evaluation aims to investigate various aspects of the IPU,

such as its advantages, limitations, adaptability, and potential to deliver promised

performance gains as compared to GPU technology, by investigating ways to achieve

efficient execution.

The Poplar SDK, which supports both TensorFlow and PyTorch, is used to fa-

cilitate the implementation of deep learning models on IPUs, thereby eliminating

the need for users to learn a new API. This higher-level development approach has

proven sufficient for most cases, as Graphcore provides optimized implementations

of existing methods in the supported libraries. However, certain library-provided

functions may not be implemented in the Graphcore system, or the existing im-

plementation may not meet the required efficiency standards. Custom kernels may

Chapter 1: Introduction 6

need to be developed for such scenarios to optimize the performance. Thus, while it

may be theoretically feasible to transfer a TensorFlow or PyTorch project directly

onto the IPU platform, this may not always result in optimal performance in prac-

tice. Therefore, this study focuses on investigating the performance optimization

of a GNN-based MOT system, which represent a significant class of real-world AI

applications. Moreover, while previous works have investigated GNN-based MOT

systems on conventional hardware, no studies have been conducted on the IPU

platform, as far as the authors are aware. As such, this study presents the first

attempt to train GNN-based MOT systems on IPUs, thereby expanding the body

of knowledge in the field of AI hardware acceleration.

In this study, I opted to implement the model designed by the authors of “Learn-

ing a Neural Solver for Multiple Object Tracking” [Brasó and Leal-Taixé, 2020] using

TensorFlow. While PyTorch was used by the authors in their original implemen-

tation, I chose TensorFlow as I was able to find more practical implementation

examples for IPU at the time of implementation. This implementation serves as

a benchmark to evaluate the performance of the IPU platform for the GNN-based

MOT application.

In summary, I conducted a comparison of IPUs with GPUs for training a GNN

for MOT problem. I migrated an existing PyTorch implementation to TensorFlow

for IPU execution. My findings demonstrate the superior performance of IPUs over

GPUs, particularly in scenarios with smaller batch sizes. Additionally, I identified

significant performance improvements achieved through device-optimized functions.

1.2 Thesis Organization

The thesis is organized as follows: In Chapter 2, the technical background of GNNs,

MOT and Graphcore IPU, along with the challenges in the MOT domain and also

challenges associated with using GNNs. Chapter 3 presents the general overview of

previous studies related to our research on MOT (3.1), GNN methods (3.2), GNN

methods for object tracking (3.2.1), and their applications on GPU (3.2.2) and IPU

(3.2.3). Chapter 4 reveals the proposed methodology in detail. Chapter 5 presents

Chapter 1: Introduction 7

the evaluation results of the conducted experiments along with the dataset that we

use in our experiments and finally, Chapter 6 is devoted to concluding remarks and

possible future research directions.

Chapter 2: Background 8

Chapter 2

BACKGROUND

2.1 Graph Neural Networks (GNNs)

GNN [Scarselli et al., 2008] is a type of deep learning architecture specifically de-

signed to operate on data structured as graphs. A graph, in this context, is a

mathematical structure consisting of a set of nodes and edges connecting them,

which represent relationships between the entities represented by the nodes. Going

forward, a node’s feature vector will be denoted as hi, where i is the node’s index.

Likewise, an edge’s feature vector will be denoted as eij, where i and j are the nodes

that the edge connects.

The purpose of GNN is to understand the topology and data patterns present in

a graph by encoding the features of nodes and updating the representation vector

through the aggregation of neighboring nodes on the graph [Ma et al., 2019]. The

core principle of GNNs is to propagate information between nodes through message

passing, allowing them to capture complex dependencies and relationships within

the graph [Zhou et al., 2020a]. Their ability to represent a wide range of real-world

data as graphs makes them a powerful tool for a variety of applications, such as

recommendation systems [Ying et al., 2018], social network analysis, image, and

video understanding [Pradhyumna et al., 2021], and object detection [Wang et al.,

2021].

Each node in the graph is associated with a feature vector, and edges between

nodes represent relationships or connections. At each iteration, nodes receive mes-

sages from their neighbors and update their feature vectors based on those messages.

This process continues until the feature vectors of all nodes have been updated to

reflect the collective information of the graph. There exist various GNN variations,

each with its own specific characteristics and applications.

Chapter 2: Background 9

There exist various types of graph neural networks that include Graph Con-

volutional Networks (GCNs), Recurrent Graph Neural Networks(RGNNs), Graph

Auto-Encoder Networks, and Spatial-Temporal GNNs.

Each variant of GNNs has its unique characteristics and is suitable for diverse

applications. For instance, RGNNs are well-suited for modeling dynamic graphs over

time, while Spatial Convolutional Networks and Spectral Convolutional Networks

are two types of GCNs that excel in processing graph data with a grid-like structure

and graph signals in the frequency domain, respectively. Graph Auto-Encoder Net-

works are optimal for unsupervised learning and dimensionality reduction of graph

data, and Spatial-Temporal GNNs are adept at capturing spatiotemporal patterns

in data.

2.1.1 The Structure of GNNs

A GNN is a category of neural network architecture designed to process and analyze

data structured as graphs or networks. GNNs are particularly well-suited for tasks

involving interconnected data points, where relationships between data elements can

significantly impact the analysis. GNNs are particularly adept at capturing intricate

relationships and dependencies within these graphs, providing a powerful framework

for understanding the underlying structure of interconnected data points. They

exhibit resilience in handling irregular and diverse data structures, accommodating

varying graph sizes, and gracefully managing noisy or incomplete information.

The structure of a GNN is determined by the graph it is operating on and the

task it is trying to perform. Generally, a GNN consists of multiple layers, each of

which performs message passing on the graph. The input to the GNN is the initial

feature vectors of the nodes in the graph, and the output is the updated feature

vectors after a certain number of iterations.

2.1.2 Common Operations in GNNs

GNNs utilize both the graph structure and the features of the nodes to infer a

set of representations that encapsulate the intricate relationships among the nodes

Chapter 2: Background 10

and edges. By exploiting the topology of the graph and iteratively updating the

node features using information from neighboring nodes, GNNs can capture the

high-order structural and relational information present in graphs. To perform the

iterative updates, GNNs employ a range of message-passing operations:

• Convolution operator: The convolution operator is one of the most com-

monly used operators in GNNs. It applies a learnable filter to the feature

representations of a node and its neighbors and then aggregates the results to

obtain a new feature representation for the node. This operator is inspired by

CNNs and has been adapted for use with graph-structured data.

• Scatter and gather operators: The scatter and gather operators are used

for message passing in GNNs. In a scatter operation, each node aggregates

information from its neighboring nodes and computes a new feature represen-

tation for itself based on this information. This new feature representation

is then passed on to the neighboring nodes in a gather operation, where each

node collects the updated feature representations from its neighbors and uses

them to compute its own new feature representation. Together, the scatter

and gather operations enable information to be passed between nodes in a

graph and allow the nodes to update their feature representations based on

the information received from their neighbors.

• Attention operator: The attention operator is another commonly used op-

erator in GNNs. It allows nodes to selectively attend to the most important

and informative neighbors by weighting the messages received from neighbor-

ing nodes. The attention weights are computed using a learnable function

that takes into account the features of the nodes and the edges connecting

them. The weighted messages are then aggregated to obtain a new feature

representation for the node. The attention mechanism has been shown to be

effective in capturing the complex relationships between nodes in a graph and

achieving state-of-the-art performance on a variety of tasks.

Chapter 2: Background 11

In addition to these operators, there are others used in GNNs, such as gated

convolution, graph pooling, and edge convolution, which modify the way messages

are propagated and aggregated through the graph.

2.1.3 Message Passing Neural Networks (MPNN)

MPNN [Gilmer et al., 2017] are a class of GNNs that utilize the concept of message

passing to model graph-structured data. In MPNNs, a message mij is exchanged be-

tween nodes, i and j, through the edge between them, and each message is computed

using a message function, fe.

More formally, let hi denote the feature vector of node i, and the feature vector

of the edge connecting nodes i and j as hij. Then, the message mij sent from node

i to node j can be computed using an MLP (Multilayer Perceptron) based message

function fe as follows:

mij = fe(hi, hj, eij) (2.1)

Here, the message function fe is typically a small MLP that takes as input the

feature vectors of the two nodes and the edge connecting them and outputs a new

message vector that is sent to the receiving node.

After computing the messages, the MPNN aggregates them using a message

passing function to update the node features. The message passing function is often

defined as a permutation-invariant function, such as a sum or a max function, that

aggregates the messages received by each node from its neighbors.

2.1.4 Challenges of Utilizing GNNs

Despite the remarkable achievements of GNNs in a range of tasks related to graphs,

such as graph and node classification, clustering, and link prediction, they have been

identified to face several obstacles. One of the challenges encountered by GNNs

is the phenomenon of over-smoothing [Rusch et al., 2023], characterized by the

gradual convergence of node representations as additional layers are added, resulting

in the loss of crucial information pertaining to the initial nodes. Moreover, GNNs

Chapter 2: Background 12

may encounter the issue of over-squashing [Topping et al., 2021], a phenomenon

whereby the non-linear activation functions within the network excessively compress

node representations, resulting in the loss of significant information. Lastly, GNNs

could potentially confront the challenge of under-reaching, in which the model is

unable to sufficiently capture essential information about nodes or edges within the

graph, leading to suboptimal performance in downstream tasks.

One of the fundamental aspects of GNN architectures is the message-passing

paradigm. In this paradigm, information is transmitted between nodes along the

edges of the graph, which serves both as the input data and the computational

structure. This represents a distinct approach in contrast to conventional neural

networks such as CNNs, which solely employ the input data as an input rather

than as the computational structure for information transmission. However, recent

studies have shown that this paradigm may not consistently yield optimal results

in particular graphs and scenarios. Some graphs do not support effective message-

passing, calling into question the viability of this paradigm.

The issue of over-squashing, where an excessive amount of information is con-

densed into a single node representation, may arise due to bottlenecks in the graph’s

structural characteristics. Some graphs present a less than optimal platform for ef-

fective information propagation due to inherent structural bottlenecks.

To mitigate this issue, current GNN implementations employ a technique termed

“graph rewiring”. This approach involves disentangling the input graph from the

computational structure or refining it for computational purposes. To rewire the

input graph, GNNs such as GraphSAGE, GAT, and latent graph learning techniques

typically utilize neighborhood sampling, virtual nodes, connectivity diffusion, and

node and edge-dropout mechanisms. Meanwhile, transformers and attention-based

GNNs learn a new graph by assigning distinct weights to each edge, which can be

considered as a form of rewiring. It’s worth noting that in modern GNN models,

information propagation often extends beyond the initial input graph structure.

Chapter 2: Background 13

2.2 Multiple Object Tracking

Multi-object tracking (MOT) is a critical task in computer vision that involves de-

tecting, localizing, and tracking multiple objects in a video sequence. The primary

objective of MOT is to estimate the trajectories of objects across frames while main-

taining their identities. This requires resolving complex data association problems,

where objects may undergo occlusions, interactions, and variable motion patterns.

MOT can be classified into two categories based on their approach to utilizing

frames: online tracking and offline tracking. The fundamental distinction lies in

the incorporation of information from future frames when processing the current

frame [Xiang et al., 2015]. In the context of an online solution, trackers operate by

sequentially processing frames, without access to future frames but with access to

past frames for reference. This characteristic makes online tracking well-suited for

time-sensitive scenarios where real-time tracking is essential. On the other hand,

offline tracking allows for the utilization of a batch of frames as input, enabling the

incorporation of future information from subsequent frames to predict the outcome

of the current frame. This approach provides offline tracking with the advantage

of leveraging a more comprehensive set of information from both past and future

frames, thereby typically resulting in higher accuracy compared to online tracking.

Additionally, in the field of single-camera multi-object tracking, these methods

can be classified into two main approaches based on their model structure: tracking

by detection and joint detection and tracking, which are also commonly referred

to as detection by tracking. The tracking-by-detection approach typically involves

utilizing an object detector to locate objects in each frame of the input video. Subse-

quently, these detected objects are associated across frames to form tracklets based

on their similarity scores. To this end, many existing multiple object tracking meth-

ods rely on separate object detection modules for initializing new tracks and up-

dating existing tracks like SORT [Bewley et al., 2016], DeepSORT [Wojke et al.,

2017], FairMOT [Zhang et al., 2021], and ByteTrack [Zhang et al., 2022]. However,

tracking and detection are strongly interconnected and can benefit from each other.

For example, the affinity model from the tracking method can reuse appearance

Chapter 2: Background 14

features already calculated by the detector, and the detector can leverage object in-

formation from the past to avoid missed detections [Kieritz et al., 2018]. To address

this, the joint-detection-and-tracking approach came up. It tackles detection and

tracking tasks simultaneously within a single framework allowing for the boosting

of detection performance by leveraging tracking information. This has emerged as a

recent trend in MOT research, with notable methods like JDE [Wang et al., 2020b],

CenterTrack [Zhou et al., 2020b], and TrackFormer [Meinhardt et al., 2022].

2.2.1 Importance of Multiple Object Tracking

It is clear that multi-object tracking plays a significant role in computer vision-

related applications, and it has received considerable attention from both academia

and industry. Multi object tracking is a fundamental technology that facilitates

the detection, identification, and real-time tracking of multiple objects from video

or image sequences. The significance of multi-object tracking lies in its diverse

range of applications including, surveillance [Elhoseny, 2020], autonomous vehicles

[Rangesh and Trivedi, 2019], human-computer interaction [Kamkar et al., 2020],

crowd management [Poiesi et al., 2013], and more.

One of the primary reasons for the significance of multi-object tracking is its

pivotal role in surveillance. In today’s world, as security becomes increasingly im-

portant, surveillance systems are essential for monitoring and detecting threats at

public and secured places, such as terrorist attacks, requiring efficient surveillance

systems that include embedded object tracking components [Chandrajit et al., 2016].

MOT plays a pivotal role in overcoming the limitations of object detection algo-

rithms, while object detectors may fail when objects are occluded or overlapped

by obstacles, a robust multi-object tracker can still accurately predict and track

the objects in such scenarios. MOT allows for real-time and accurate tracking of

objects, enabling the detection of suspicious behavior, and potential security cases.

This capability enhances the reliability, effectiveness, and efficiency of surveillance

systems in addressing security challenges, making multi-object tracking an indis-

pensable technology in the field of computer vision.

Chapter 2: Background 15

Additionally, MOT is crucial for developing artificial intelligence interfaces for

applications like augmented reality and virtual reality by using computer vision. As

a result of accurate tracking of movements and gestures, users can interact seamlessly

with virtual objects, enhancing the user experience and usability in several different

domains, including gaming, education, and training. [Islam et al., 2020]

Multi-object tracking also holds significant importance in the field of autonomous

driving, where it is employed to detect and predict the behavior of pedestrians, other

vehicles, and obstacles. For autonomous driving to be safe, the vehicle perception

system must be able to perceive the environment accurately. MOT enables au-

tonomous vehicles to accurately track and predict the movement of objects in their

environment, ensuring safe and efficient navigation. By providing real-time informa-

tion about the position, velocity, and trajectory of surrounding objects, multi object

tracking enables autonomous vehicles to make informed decisions and take appro-

priate actions. Hence, the development of an advanced object tracking algorithm is

crucial to ensure accurate and efficient perception in autonomous driving scenarios

[Guo et al., 2022].

Furthermore, multi-object tracking has applications in sports analytics [Cui

et al., 2023], crowd management [Kumaran and Reddy, 2017], and retail analyt-

ics. In sports analytics, it is used to track players in real-time, gathering their

statistics and analyzing their performance, providing in-game tactics, and develop-

ing strategies accordingly. The use of multi-object tracking for crowd management

is crucial in public events, transportation hubs, and urban areas. It aids in crowd

control, detects suspicious behavior, and enhances public safety in various real-world

scenarios. In the context of retail analytics, it leverages MOT to monitor customer

movements, behaviors, and interactions with products, as well as optimize store lay-

outs. In addition to gaining valuable information about how customers interact with

products, retailers can gain insight into how long they spend in various areas of the

store by utilizing MOT. By leveraging MOT in retail analytics, retailers can provide

better customer experiences, boost sales, and build loyalty among customers over

the long term.

Chapter 2: Background 16

2.2.2 Challenges in Multiple Object Tracking

Compared to tracking a particular object, MOT is a more intricate process. The

development of efficient and effective MOT methods is a challenging problem due

to the diverse and complex nature of real-world environments.

MOT involves creating new tracked objects using detection results, re-identifying

lost objects when they reappear, and terminating objects when they leave the cam-

era’s field of view. Additionally, MOT faces additional challenges such as dealing

with object occlusions, id switching, changes in appearance, motion patterns, and

pose changes, which are more complex compared to tracking a single object [Luo

et al., 2021]. Occlusion and ID switch are two common challenges in MOT [Park

et al., 2021]. When an occlusion occurs, it becomes difficult to accurately predict the

current position of an object using a simple tracking algorithm, as the object may be

partially or fully obscured by other objects. Additionally, when a tracker determines

that an object is no longer visible in the frame due to occlusion or other factors, it

may mistakenly assign a new ID to the same object when it reappears, leading to an

ID switch. Both occlusion and ID switch can result in tracking errors and can signif-

icantly impact the accuracy and reliability of MOT algorithms. Overcoming these

challenges requires the use of robust methods that can effectively handle occlusion

and ID switch scenarios in MOT. This can be achieved through various techniques,

such as incorporating contextual information, utilizing sophisticated motion models,

or leveraging deep learning techniques for object representation and tracking.

One of the other primary challenges is dealing with intra-class variations in

surveillance video event detection. In some events, the visual appearance of ob-

jects can exhibit significant variations, posing problems in tracking and detecting

them over time due to their visual appearance [Kumaran and Reddy, 2017]. In

addition to these, there are a few key challenges researchers need to address when

analyzing sports footage especially, due to their fast speeds and motion blur in com-

plex background scenes. In order to meet these challenges, researchers must focus

on improving the performance of associations, particularly in these areas [Cui et al.,

2023].

Chapter 2: Background 17

The primary challenge of creating an online MOT framework are developing

robust associating metrics that link detections with tracks effectively, accurately

identifying the optimal timing for creating new tracks, distinguishing true detections

from false positives, and making informed decisions about terminating lost tracks.

While in the offline MOT framework, the main challenges lie in constructing the

graph and network, as well as optimizing the global labeling problem associated

with them [Xu et al., 2019].

Additionally, the need to achieve fast running speeds remains a constant priority

in tracking scenarios. To achieve smooth performance and responsiveness in dynamic

environments where objects change appearances and move quickly, it is extremely

important to enhance tracking speed, especially in real-time object tracking models

[Cobos et al., 2019].

2.3 Graphcore IPU

Graphcore, a UK-based startup, unveiled the Intelligence Processing Unit (IPU)

in 2017 and has since introduced the second generation devices. The Graphcore

IPU stands out as an innovative and highly scalable parallel processor explicitly

crafted for the acceleration of ML and AI workloads. Tailored for a spectrum of

tasks including Computer Vision, Natural Language Processing (NLP), GNNs, and

other advanced applications, the IPU showcases versatility in handling diverse AI

challenges. Notably, its capability to effectively manage small batch sizes enhances

its applicability for real-time applications, emphasizing low latency—a critical aspect

for a wide range of practical use cases [Sumeet et al., 2022].

2.3.1 Structure of IPU

Graphcore’s IPU diverges from the conventional SIMD (Single Instruction Multiple

Data) / SIMT (Single Instruction Multiple Threads) architecture commonly em-

ployed by GPUs. Instead, it adopts a massively parallel approach known as MIMD

(Multiple Instructions Multiple Data). This architecture features ultra-high band-

width memory strategically positioned in close proximity to the processor cores. The

Chapter 2: Background 18

IPU’s design proves exceptionally efficient for applications demanding irregular and

sparse data access. It excels in executing individual processing threads on modest

data blocks, capitalizing on its MIMD architecture [Mohan et al., 2020]. This archi-

tectural choice is particularly advantageous for graph algorithms, which inherently

exhibit unpredictable and irregular memory access patterns. Such characteristics

typically result in performance bottlenecks in traditional processors that rely on

pre-caching mechanisms.

Figure 2.1: The Graphcore Colossus™ MK2 GC200 IPU [Graphcore, 2020]

The IPU comprises individual tiles, each housing a multi-threaded core and a

limited amount of private SRAM. In the MK2 version, the IPU is equipped with

1472 potent processor cores, capable of concurrently executing nearly 9000 indepen-

dent program threads. Notably, the original MK1 iteration, situated on the M1000

platform, featured a dual-chip design. In contrast, the more recent M2000 model rep-

resents a substantial advancement, adopting a quadruple-chip configuration. This

architectural progression directly correlates with significant performance enhance-

ments. Specifically, in the context of neural network training, the M2000 machine

exhibits an impressive 7 to 9 times acceleration compared to the first-generation

Chapter 2: Background 19

Graphcore IPU, MK1. Moreover, the M2000 machine achieves an eight-fold accel-

eration in inference processing [Freund and Moorhead, 2020].

The utilization of TSMC’s advanced 7nm manufacturing process has yielded a

remarkable transistor count of 59.4 billion in the production of a high-performance

computing system. This substantial transistor count empowers the system to deliver

an impressive computational capability of approximately 250 trillion operations per

second (TOPS) through its 1,472 cores. Complementing this computational power,

the system boasts a noteworthy memory capacity, housing 900MB of SRAM. The

interconnection of these components is facilitated by a high-speed, low-latency fab-

ric, resulting in a substantial bandwidth of 2.8TB/s [Freund and Moorhead, 2020].

Moreover, the intelligent distribution of memory across the system’s tiles enhances

data processing efficiency. This strategic allocation ensures the optimized utilization

of memory resources, enabling the IPU to navigate diverse computational tasks with

precision and effectiveness.

The analysis revealed that [Mohan et al., 2020] the IPU exhibited superior train-

ing performance for GANs in contrast to the GPU. Moreover, in scenarios involving

small batch sizes, the IPU outperformed the GPU by a substantial margin, exhibit-

ing a speedup factor ranging from 4 to 5.

2.3.2 Memory Architecture

The memory architecture of the IPU is a crucial facet of its design, showcasing dis-

tinctive choices made by Graphcore to optimize performance. In particular, two key

types of memory exist on IPU: on-tile memory in the form of SRAM and Streaming

Memory with DDR4 technology in IPU-Machines. These memory types contribute

significantly to the IPU’s efficiency, especially in multi-IPU configurations.

On-Tile Memory (SRAM):

An essential design choice by Graphcore involves the utilization of SRAM as the

on-tile memory, akin to cache memory. In the second generation of IPUs, each tile

is equipped with 624KB of SRAM, resulting in a substantial total of 897MB across

1472 tiles. While modest on a per-tile basis, this on-tile SRAM proves significant,

Chapter 2: Background 20

potentially accommodating entire models for smaller-scale tasks. However, in the

context of multi-IPU setups, such as configurations involving 16, 64, or 256 IPUs,

the collective on-tile memory offers substantial capacity for handling larger models.

Streaming Memory (DDR4):

Complementing on-tile SRAM, IPU-Machines, composed of multiple IPU de-

vices, introduce another critical memory type known as Streaming Memory. Presently

sized at 448 GBs, Streaming Memory plays a crucial role in facilitating data exchange

among IPUs. Utilizing DDR4 technology, this memory is directly accessible by IPUs

on the machine. During the exchange stage, IPUs can efficiently access and copy

data from Streaming Memory to their respective on-tile memories, enhancing the

overall computational capabilities of the IPU-Machine.

2.3.3 Computing Model

At the hardware level, the IPU adopts the BSP (Bulk Synchronous Parallel) model, a

robust computing paradigm designed for crafting parallel algorithms and effectively

addressing issues like deadlocks in parallel software. The BSP model is structured

into several stages, collectively forming a superstep:

1. Local Compute Stage: Each process autonomously executes its designated

task utilizing its local memory.

2. Communication Stage: Processes engage in all-to-all communication to ex-

change data. In the IPU, two types of communication mechanisms are em-

ployed: DoExchange (facilitating data exchange between tiles within an IPU)

and GlobalExchange (enabling data exchange between different IPUs).

3. Synchronization Barrier Stage: A global synchronization barrier ensures that

all processes conclude their local computations and communication stages be-

fore transitioning to the subsequent superstep. In the IPU, two types of syn-

chronization occur: Internal Sync (taking place between tiles of an IPU) and

External Sync (occurring between different IPUs).

Chapter 2: Background 21

Graphcore strategically employs this computing model to ensure the seamless

execution of highly parallel programs, minimizing the risk of deadlocks or race con-

ditions. This model provides a structured and efficient framework for parallel algo-

rithm design and execution on the IPU hardware.

2.3.4 IPU Machine

A single IPU is constrained by limited device memory, measuring approximately 900

MB SRAM, rendering it impractical for larger models. Instead, the design principle

encourages the collaborative use of multiple IPUs to establish a collective memory

pool, enhancing efficiency. The IPU-link technology, boasting a communication

speed of up to 320 GB/s, facilitates seamless interaction between IPUs. In response

to this collaborative paradigm, Graphcore engineered a compute platform known

as the IPU-Machine. This platform serves as a fundamental building block for

creating more expansive compute systems, exemplified by “the Bow Pod16.” The

latter comprises 4 Bow-2000 IPU-Machines, each consisting of 4 Colossus Mk2 IPU

devices, resulting in a total of 16 devices. Larger setups are also available, such as

Pod256.

2.3.5 IPU Programming

Graphcore presents Poplar, an extensive software stack meticulously crafted for the

compilation and execution of programs on IPUs, complemented by seamless inte-

gration with popular deep learning frameworks like TensorFlow and PyTorch. Com-

prising a compiler, a host run-time, and a library collection [Vaswani et al., 2022],

Poplar empowers C++ applications to construct, compile, and execute programs

on the IPU, leveraging the capabilities of the Poplar graph library (libpoplar). The

inclusion of the PopLibs library further enhances efficiency by providing pre-defined

optimized functions, allowing developers to fully exploit IPU hardware resources

and streamline their development workflows.

In tandem with Poplar, Graphcore introduces PopVision, a suite of tools designed

for program analysis and performance optimization. The PopVision Graph Anal-

Chapter 2: Background 22

yser offers valuable insights into memory usage and execution details of programs

executing on IPUs. Simultaneously, the PopVision System Analyser generates an

event trace, capturing execution and communication events between the host and

IPUs. These robust analysis tools play a pivotal role in assisting developers, provid-

ing a nuanced understanding of program behavior, and facilitating the fine-tuning

of programs for optimal performance on Graphcore IPUs.

By combining novel floating-point technologies with IPU processor cores, Graph-

core’s AI-Float enhances IPU processor performance. It supports sparse operations

with floating-point arithmetic and includes library support for a variety of sparse

operations. In this way, training and inference can be performed more efficiently on

sparse data, resulting in fewer parameters, faster training times, and lower energy

consumption [Graphcore, 2020].

2.3.5.1 Looping Utilities

In TensorFlow for IPU, akin to the standard TensorFlow version, there are special-

ized constructs designed to optimize the efficiency of training or inference loops.

To optimize training on the IPU with TensorFlow, it’s essential to encapsulate the

training operations within a loop. This approach is necessary because executing the

training code separately for each batch of the training dataset would incur the over-

head of frequent control transfers between the host and the IPU. The training loop

can be created using tensorflow.python.ipu.loops loop construct. Convention-

ally, one iteration of the loop involves utilizing session.run(). However, the use

of the tensorflow.python.ipu.loops loop construct introduces an enhancement

by enabling a single invocation of session.run(), thereby mitigating the overhead

associated with multiple calls. Therefore, by employing a training loop, we can ex-

ecute training operations iteratively without the need to relinquish control back to

the host.

In the typical TensorFlow execution flow, operations outside of loops expect a

fixed number of tensors as input. However, when a training operation is embedded

within a loop, the input data must be structured as streams of values. Traditional

Chapter 2: Background 23

TensorFlow Python feed dictionaries are not designed for delivering data in this

format. Therefore, when conducting training within a loop, it becomes necessary

to feed data from a TensorFlow dataset. Likewise, the outputs should be format-

ted as streams. TensorFlow for IPU offers two mechanisms, namely infeed queues

and outfeed queues, to facilitate this process when utilizing the IPU. Serving as a

wrapper around the tf.Dataset object, the IPUInfeedQueue seamlessly integrates

infeed operations, creating a queue from the host device to the IPU. This mechanism

empowers the IPU to retrieve dataset elements as needed. Programmatically, the

implementation is simplified by passing the IPUInfeedQueue instance to a loop gen-

erated using tensorflow.python.ipu.loops. This streamlined setup effortlessly

handles the iterative fetching of input data without the computational burden of

calling session.run at each step.

2.3.6 Host to Device Communication in IPU

To harness the full potential of any hardware accelerator, it is crucial to optimize

input/output (I/O) performance. In TensorFlow for IPU, two primary constructs fa-

cilitate device-to-host communication: the IPUInfeedQueue and IPUOutfeedQueue.

These classes encapsulate the functionality needed to add infeed and outfeed en-

queue/dequeue operations into the computational graph, enabling the communica-

tion between the device and the host. They serve the purpose of fetching data for

training loop input and transmitting outputs back to the host device.

IPU provides 3 mechanisms to elevate I/O performance further:

1. Prefetching Elements: Prefetching elements involves strategically position-

ing data in logical proximity to the IPU before it is required by the running

program, utilizing resources like Streaming Memory. This optimization en-

ables the IPU to access the data swiftly when needed, surpassing the speed of

accessing data currently residing on the host. The prefetch depth, a param-

eter configurable when creating the IPUInfeedQueue, governs the quantity of

dataset elements moved to the Streaming Memory in each step. The PopVi-

sion tool facilitates the analysis of cycle allocation to various operations in BSP

Chapter 2: Background 24

steps, such as OnTileExecute and DoExchange, as well as I/O operations like

StreamCopyBegin. Elevated percentages of cycles spent on StreamCopyBegin

operations indicate potential I/O-related program execution delays, partic-

ularly in the data availability to the running program. In such scenarios,

adjusting the prefetch depth to a value higher than 1 can be useful.

2. Utilizing I/O Tiles: An I/O tile is an IPU tile exclusively dedicated to ex-

ecuting I/O operations without engaging in the actual computations required

by the running program. Adjusting this parameter involves striking a bal-

ance between reducing the number of tiles participating in the computation

when set to a higher value and ensuring sufficient memory capacity to ac-

commodate the transferred tensors into the tile memory when set too low.

This parametrization plays a critical role in optimizing the efficiency of I/O

operations while managing computational resources effectively.

2.3.7 Using DL Frameworks with IPU

Developers can leverage high-level support for TensorFlow and PyTorch when work-

ing with IPUs. To further streamline development, the PopLibs library is available

within the Poplar SDK and on GitHub. This library incorporates a wide range of

pre-defined functions, including linear algebra operations, element-wise tensor op-

erations, non-linearities, and reductions, all optimized for efficient execution on the

IPU. A high-level description of the preferred AI framework, such as TensorFlow or

PyTorch, is used to construct the complete compute graph, including computation,

data, and communication elements. This compute graph is then compiled and run-

time programs are generated that effectively manage compute operations, memory,

and networking. This approach ensures the optimal utilization of IPU hardware

resources, harnessing their full potential.

2.3.8 Profiling IPU programs

Graphcore provides comprehensive profiling capabilities for IPU applications. To

leverage these, users must initiate the capture of profiling reports during program

Chapter 2: Background 25

execution. This is achieved by setting the POPLAR ENGINE OPTIONS environment

variable to a JSON string. For example, executing a program with POPLAR ENGINE

OPTIONS=‘{"autoReport.all":"true", "autoReport.directory":"./desired report

path/", "debug.allowOutOfMemory":"true"}’ python3 application.py enables

the capture of profiling data. This variable allows users to specify the directory for

the profiling report and to set specific parameters, such as allowOutOfMemory. This

particular parameter instructs the IPU to proceed with the compilation process for

profiling purposes, even if it determines that the available memory is insufficient for

executing the program.

Upon completion of execution, users can retrieve the report from the specified

directory. The report typically comprises several files, including a large profile.pop

file containing the profiling data. For a medium-sized model profiled over 100 epochs,

the report file can be several tens of gigabytes in size.

There are two primary methods for analyzing these reports:

PopVision Graph Analyser GUI Tool: This user-friendly tool allows for the open-

ing of local and remote report files (via SSH). It displays various reports like Memory

Report, Liveness Report, Program Tree, Operations Summary, Operations Graph,

and Execution Trace. Of these, the Execution Trace is the most resource-intensive,

often requiring significant system memory to load. This report can be prohibitively

large for models beyond a basic complexity, with file sizes reaching tens of gigabytes.

In practice, opening such extensive reports can consume more memory than the file’s

disk size. In some instances, attempting to load an Execution Trace report can lead

to excessively high memory usage without successful loading, possibly indicating a

memory leak. This issue typically occurs during the “Creating BSP stats, processing

data” stage. I observed this issue in reports generated using Poplar SDK version

3.0 and later. Opening smaller reports tends to be more stable.

PopVision Analysis Library (libpva): As part of the Poplar SDK, libpva provides

a programmatic approach to analyze profiling reports. As an example, it enables

users to iterate over execution steps and gather detailed information on the cycles

spent by IPU tiles. This Python library serves as a robust alternative to the GUI

tool, facilitating the development of reusable profiling scripts.

Chapter 2: Background 26

In summary, the advanced profiling capabilities offered by Graphcore are in-

dispensable for identifying and addressing performance and memory issues in IPU

applications. The detailed insights provided by the profiling reports are invaluable

for optimizing computational and memory usage.

Chapter 3: Literature Review 27

Chapter 3

LITERATURE REVIEW

In this section we provide a comprehensive review of deep learning-based meth-

ods for MOT. Firstly, we discuss existing MOT methods that utilize deep learning

techniques. Then, we explore how GNNs have enhanced the performance of MOT.

Finally, we examine the current methods that take into account hardware consider-

ations for GPU and IPU to enhance the tracking performance even further.

3.1 Multiple Object Tracking Methods

The development of deep learning-based methods, which are capable of automati-

cally extracting high-level features from input frames using CNNs, has significantly

advanced the field of MOT.

In the field of tracking algorithms, there has been a greater focus on investi-

gating the tracking of individual objects rather than multi-object tracking. Li et

al.[Li et al., 2018] provide a comprehensive overview and comparative analysis of the

most advanced deep learning-based methods for tracking a single object. A track-

ing benchmark [Wu et al., 2013] has been created to enable fair comparisons and

evaluations of tracking performance in diverse environments, with accompanying ex-

perimental evaluations conducted [Smeulders et al., 2013] to assess the effectiveness

of various tracking techniques. By combining the discriminative power of Single

Object Tracking (SOT) effectively and efficiently, Zheng et al. [Zheng et al., 2021]

proposed a novel end-to-end trainable MOT architecture. Their approach extends

the CenterNet [Zhou et al., 2019] detector by incorporating a SOT branch in paral-

lel with the object detection branch. Notably, their SOT branch trains a separate

model for each target online, enabling specific discrimination. These trained SOT

models then perform object association in the subsequent frame, leading to more

Chapter 3: Literature Review 28

efficient online learning and tracking compared to using multiple SOT models di-

rectly in MOT. Later on, Zhang et al. [Zhang et al., 2021] introduced FairMOT,

a MOT system built on top of CenterNet, which addresses the fairness issue with

new discoveries that are novel and valuable for the field of MOT. They showed

that FairMOT achieves high levels of detection and tracking accuracy, outperform-

ing previous state-of-the-art methods by a significant margin on multiple datasets,

including 2DMOT15, MOT16, MOT17, and MOT20.

The survey article [Xu et al., 2019] examines the use of deep neural networks for

multi-object tracking and discusses three main approaches: (i) extracting semantic

features using pre-trained deep networks, (ii) designing the core of the tracking

framework with a deep neural network, and (iii) designing deep networks for end-to-

end tracking. The article highlights the effectiveness of deep networks for tracking

when used in different ways.

Apart from the accuracy of the tracking results, achieving fast running speeds

remains a high priority for tracking. To this end, Wang et al. [Wang et al., 2020b]

presented JDE, a novel MOT system that integrates target detection and appearance

feature learning in a shared model. Their design effectively reduces the runtime of

the MOT system, enabling it to operate at (near) real-time speeds. Despite the

accelerated processing, their proposed system achieves comparable tracking accuracy

with state-of-the-art online MOT methods.

In recent years, tracking using Siamese networks has demonstrated promising

performance. Liu et al. [Liu et al., 2019] proposed a Siamese network with an auto-

encoding constraint to extract features for objects on the scene, and introduced a

composite feature called PAN to better describe the sequential features of tracklets.

Following that, Shuai et al. [Shuai et al., 2020] introduced an integrated network ar-

chitecture, Siamese Track-RCNN, that combines detection and association in a single

forward pass, achieving efficiency and accuracy. Their study showed that sharing a

CNN backbone among three branches - detection, tracking, and re-identification - re-

sults in low computational cost, memory footprint, and increased accuracy through

complementary functions. Xu et al. [Xu et al., 2020] proposed DeepMOT which

trains Siamese trackers along with other components under the MOT training frame-

Chapter 3: Literature Review 29

work by mainly focusing on improving structured loss in MOT and they achieved

a new state-of-the-art result on MOTChallenge benchmark datasets. By leveraging

their study, Shuai et al. [Shuai et al., 2021] presented an integrated end-to-end

multi-object tracking network, SiamMOT, using Siamese trackers. SiamMOT uni-

fies detector and tracker in a single network, unlike its closest rival, DeepMOT and

they outperformed the state-of-the-art.

Despite their encouraging results, Siamese methods have limitations in fully

leveraging spatial-temporal target appearance modeling when applied to complex

situations where objects are occluded or remain invisible for multiple frames, result-

ing in unsatisfactory tracking outcomes [Yu et al., 2022]. In addition to that, CNNs

are not well-suited for processing graph data due to their arbitrary and complex

topology, which results in a lack of spatial locality. Moreover, the lack of a fixed

node ordering further complicates the use of CNNs for graph data processing. These

factors make it difficult to apply CNNs directly to graph data, and as an alternative

approach, GNNs have been developed to address these challenges.

3.2 GNNs

GNNs were first introduced and named in a 2009 paper [Scarselli et al., 2008]. They

proposed a graph neural network that takes a directed graph as input, where nodes

and edges have associated static feature vectors. Each node has a state vector that

is recursively updated using information from neighboring nodes and edges, and a

parametric output function computes the final output for a node. Their potential

was later demonstrated in 2017 with the introduction of a variant called the Graph

Convolutional Network (GCN) [Kipf and Welling, 2016], where they have applied

the convolution filters directly on the graph nodes and their neighbors, has since

become one of the most widely used GNNs. The concepts and the application of

GNN are summarized by [Battaglia et al., 2018]. Furthermore, the advantages,

disadvantages, and potential improvements of GNNs is conducted in [Gao and Hao,

2021].

Message Passing Neural Networks (MPNNs), as proposed in [Gilmer et al., 2017],

Chapter 3: Literature Review 30

involve each node aggregating feature vectors from its neighbors to compute its new

feature vector. The MPNN is characterized by the authors as a versatile and general-

ized framework for message-based GNN computation. The explanation emphasizes

that MPNNs have the capacity to articulate numerous GNN architectures proposed

in the existing literature, positioning themselves as a comprehensive and overar-

ching architectural paradigm. This recognition underscores the MPNN’s efficacy

in encapsulating a broad spectrum of graph-based learning methodologies, thereby

establishing it as a foundational and unifying structure in the field.

3.2.1 GNN Methods for Object Tracking

GNNs are a type of machine learning approach that has exhibited promise in ad-

dressing challenging problems involving graph structures, especially in the domain

of computer vision [Tang et al., 2022]. Chen et al. [Chen et al., 2022] presented

a comprehensive survey of GNNs in computer vision from a task-oriented perspec-

tive. They categorized the algorithms into five groups based on the modality of

input data. They provided discussions on key innovations, limitations, and poten-

tial research directions for helping to obtain new insights towards human-like visual

understanding. There has been a growing interest in applying GNNs to various sub-

fields of computer vision, including human action recognition [Li et al., 2021, Feng

and Meunier, 2022], visual question answering [Sharma and Jalal, 2021], object de-

tection [Shi and Rajkumar, 2020], person re-identification [Shen et al., 2018], single

object tracking [Gao et al., 2019], and multiple object tracking [Li et al., 2020, Wang

et al., 2021]. Among these, GNN-based approaches have demonstrated remarkable

success in the task of MOT [Wang et al., 2020a].

GNN-based tracking techniques in MOT use graph representations of objects

and incorporate temporal information to capture motion patterns. This approach

yields more precise and resilient tracking performance, enhancing the efficiency and

accuracy of MOT algorithms. In pursuit of this goal, researchers have endeavored

to reformulate the MOT problem within a differentiable GNN framework. This task

involves overcoming several challenges, such as developing effective graph construc-

Chapter 3: Literature Review 31

tion techniques and establishing appropriate loss functions to ensure the model’s

differentiability. The ultimate goal is to exploit the potential of GNNs to enhance

the precision and efficiency of object tracking, facilitating broader applications in

this domain.

Ma et al. [Ma et al., 2019] treated bounding boxes as nodes, and CNN and

Motion Encoder are used to extract motion and appearance features. In order to

learn the relationships between the nodes, an adjacency matrix is constructed using

the cosine similarity of node embeddings, and the concatenated features are fed into

a GNN. Those within the same range are considered the same person and linked

sequentially. Gao et al. [Gao et al., 2019] introduced GCT, an end-to-end graph

convolutional tracking framework for visual tracking, which outperformed state-of-

the-art trackers on five benchmarks and runs in real time. They utilized GCNs in

a Siamese network for spatial-temporal target appearance modeling and context-

guided adaptive learning. Later on, a MOT framework is proposed by Wang et al.

[Wang et al., 2020a] that utilizes GNNs for modeling interaction in object detection,

and RNNs for modeling motion dynamics. Motion and appearance features are

concatenated and fed into GNNs. A new object detector, data association network,

and joint MOT framework are included in the framework, which achieves state-of-

the-art results on MOT challenge datasets. Ma et al. [Ma et al., 2021] proposed

an end-to-end Deep Association Network (DAN) for multiple object tracking, based

on GNNs, combined with a Human-Interaction Model (HIM), which extracts inter-

relation details, and is effective for occluding targets. Apart from GNNs, both

models also include CNN and RNN networks. GNNs were leveraged in two parts

of their Deep Association Network: feature extraction and graph optimization. In

this study, DAN provides an unprecedented model structure for MOT and achieves

superior performance compared to state-of-the-art methods.

GCNN is also utilized by Papakis et al. [Papakis et al., 2020] to introduce

an online tracking method, GCNNMatch, for MOT benchmarks. Instead of using

Siamese architectures to learn the appearance features of each object individually,

the proposed method uses context information such as location and object size. Ad-

ditionally, the proposed method uses Sinkhorn normalization for bipartite matching

Chapter 3: Literature Review 32

constraints, and geometric information when constructing graph edges and comput-

ing affinity. Compared to other GNN-based MOT methods, the approach achieved

superior accuracy at that time. Rangesh et al. [Rangesh et al., 2021] presented a

framework that leverages dynamic undirected graphs and a message-passing graph

neural network, TrackMPNN, to tackle the data association problem across mul-

tiple timesteps. In the proposed approach, each detection in the MOT problems

is represented as a node, and potential associations are represented as edges. At

each timestep, new detections and associations are added, while inactive ones are

removed. In this way, they managed to rectify errors and handle missed/false de-

tections in real-time, and achieved promising results on popular benchmarks for

autonomous driving.

Recently Braso et al. [Brasó et al., 2022] proposed a method which builds upon

their previous CVPR paper that our study also leverages [Brasó and Leal-Taixé,

2020] to track and segment multiple objects using message passing networks for

feature learning and solution prediction. A time-aware neural message passing up-

date step is included in their approach, which is inspired by traditional MOT graph

formulations. Furthermore, a unified framework that integrates tracking and seg-

mentation is presented for improved association performance. They achieve state-

of-the-art results in eight MOT and MOTS benchmarks.

3.2.2 GNN Methods on GPU

As GNNs become more widely adopted in scientific machine learning, the significance

of optimizing their training and inference efficiency is gaining greater attention.

As deep learning communities continue to adopt deeper networks and work with

larger datasets, hardware limitations have become more prevalent. Fortunately, the

advent of specialized hardware platforms, such as Graphics Processing Units (GPUs)

and Tensor Processing Units (TPUs), offers a promising solution to address these

challenges. Numerous techniques have been proposed to optimize GNN training on

GPUs for efficient performance [Wang et al., 2022, Wu et al., 2023].

Wang et. al. [Wang et al., 2022] compared the performances of GPUs and TPUs

Chapter 3: Literature Review 33

by training a GNN in the context of real-life pattern recognition. Their findings

indicate that while the accuracy of the GNN model trained with TPUs and GPUs

is comparable, there are notable differences in latencies between the two platforms.

Specifically, a TPU with 32 TPU v2 cores performs on par with 4 GPU V100s in

terms of speed. The authors observed that TPUs tend to dedicate a significant por-

tion of their training time to message passing operations, in contrast to GPUs which

primarily emphasize matrix multiplications. Furthermore, GPUs are comparatively

more cost-effective and energy-efficient than TPUs. Their analysis reveals that the

bottlenecks of training GNN on GPUs are the computing capability for the matrix

operations and the memory bandwidth for the message passing operations.

Hosseini et al. [Hosseini et al., 2022] conducted a thorough examination of

Graph Neural Networks (GNNs) in the context of scientific machine learning, uti-

lizing the PyTorch Geometric software framework and NVIDIA A100 GPUs for

profiling and benchmarking GNN operations. The study revealed that memory in-

efficiency emerges as a significant bottleneck, with native PyTorch operations often

outperforming their PyTorch Geometric counterparts. Notably, several GNN oper-

ations lack optimization for sparsity, exemplified by torch.addmm, which does not

benefit from sparse input optimizations compared to torch.sort. Consequently, this

deficiency results in runtime and memory bottlenecks that hinder overall GNN per-

formance. To address these challenges and enhance GNN efficiency, the authors

propose the implementation of sparse versions for benchmarked native operations.

In the same year, Zhou et al. [Zhou et al., 2022] proposed TGL, a general frame-

work for training Temporal Graph Networks (TGNs) on a large scale, with billions

of nodes and edges. TGL employs distributed memory systems to enable parallel

GNN training, making it suitable for large-scale offline settings. According to the

authors, TGL is groundbreaking as the first work to propose a general framework

for training TGNs on multiple GPUs. It also includes implementations of various

existing temporal GNNs, making it a powerful tool for learning representations on

dynamic graphs. TGL allows for efficient training of different TGN variants on both

single GPU and multiple GPUs, facilitated by simple configuration files. TGL’s

performance was assessed by comparing it with five open-source methods on four

Chapter 3: Literature Review 34

small-scale datasets using a single GPU, as well as two large datasets with multi-

ple GPUs, for tasks such as link prediction and node classification. Overall, TGL

demonstrated comparable prediction accuracy to baseline models, while significantly

speeding up both training and evaluation, with an average speedup of 13x.

3.2.3 GNN Methods on IPU

When it comes to hardware acceleration for GNNs, IPUs and GPUs have distinct

features. IPUs, with their high-bandwidth memory situated proximately to proces-

sor cores, are specifically designed for efficient handling of irregular and sparse data

structures commonly encountered in graph-based tasks. These advantages trans-

late into significantly improved throughput and performance for smaller batch sizes

over GPUs. In general, IPU’s advantage grows with smaller and more fragmented

memory operations over GPU. In contrast, GPUs, while also equipped with high-

bandwidth memory, excel in dense matrix computations prevalent in many deep

learning tasks but may encounter challenges, including reduced data locality, when

confronted with irregular data structures due to differences in memory hierarchy

and access patterns.

Recently Moe et. al. implemented a Spatio-Temporal Graph Neural Network

(STGCN) on the IPU and its performance was thoroughly compared with the con-

ventional GPU implementations of STGCN. Their findings proved the claims that

the IPU effectively delivers the promised performance improvements for STGCN.

The key finding of this study is a substantial performance increase of approximately

4 times when using the IPU in comparison to the Nvidia V100 SCM3 for training

of GNNs [Moe et al., 2022].

3.3 Comparing IPU and GPU

As the pioneering study on IPUs, Mohan et al. [Mohan et al., 2020] conducted

a comprehensive comparison of the performance on IPUs, GPUs and CPUs across

various neural network architectures and parameters. Their findings highlighted the

significance of batch size as a critical variable. Their study revealed that IPU and

Chapter 3: Literature Review 35

GPU, both outperformed CPU, with IPU demonstrated superior performance over

the GPU for batch sizes that are accessible to both processors. Furthermore, despite

GPUs being able to handle larger batch sizes compared to IPUs, IPUs exhibited

superior performance in terms of event generation speed, even when utilizing smaller

batch sizes.

In a subsequent study, Sumeet et al. [Sumeet et al., 2022] conducted a perfor-

mance comparison between IPU and GPU for a compute-intensive text region detec-

tion application. Based on compute precision, number of IPUs used, and batch size,

they evaluated the IPU’s throughput, power consumption, and accuracy capabilities.

Overall, the IPU demonstrated superior throughput than CPU and NVIDIA A100

GPU across all batch sizes, particularly with FP16 implementations. As compared

to larger batches, the IPU demonstrated significant gains in throughput over other

hardware, particularly with small batch sizes.

Chapter 4: Methodology 36

Chapter 4

METHODOLOGY

GNNs are extensively employed in the context of MOT tasks, with message

passing serving as a crucial element within GNNs. This iterative process entails the

exchange of messages between nodes within the graph, resulting in the updating of

node and/or edge feature vectors.

“Learning a Neural Solver for Multiple Object Tracking” [Brasó and Leal-Taixé,

2020] presents a compelling case for evaluating the efficacy of GNN training. This

real-world application represents a common scenario, characterized by a simple

model architecture that solely relies on basic MLPs to construct the GNN, wherein

a fundamental linear layer is predominantly employed. Such an application example

facilitates the discernment of the impact of scatter/gather operations on both the

overall training and inference performance of the model. Consequently, we have se-

lected this project as the foundation for our IPU implementation and experimental

investigations.

This implementation afforded me the opportunity to scrutinize the distinctions

between utilizing a GPU versus an IPU when implementing a TensorFlow model.

It encompassed an examination of the data loading process, diverse optimization

considerations specific to IPU usage, and, significantly, the optimization of scatter-

gather operations that hold paramount importance for enhancing the performance

of GNNs on the IPU.

Optimizing scatter/gather operations holds significant importance when execut-

ing a MOT application on an IPU. These operations encompass the transmission of

messages from a single node to multiple other nodes (scatter) and the collection of

messages from multiple nodes into a single node (gather). In the context of GNNs,

scatter/gather operations play a crucial role in facilitating information propagation

across the graph and gathering relevant information from neighboring nodes.

Chapter 4: Methodology 37

As a result, this research endeavors to investigate the performance of GNN train-

ing and inference on IPU, with a specific emphasis on techniques aimed at optimizing

scatter/gather operations within a MOT application running on the IPU.

4.1 Implementation of the MOT Neural Solver in TensorFlow for IPU

The Graphcore IPU is a dedicated hardware accelerator optimized for enhancing

the training and inference of deep learning models. TensorFlow is a popular open-

source machine learning framework that is widely used for training and deploying

deep learning models. The TensorFlow IPU integration enables users to leverage

the power of the IPU to accelerate their TensorFlow models. Accessing the IPU

through TensorFlow or PyTorch, both of which are widely recognized as high-level

deep learning frameworks, presents a convenient approach. This is advantageous as

it caters to the familiarity of developers in the field, facilitating their engagement

with the IPU for various tasks.

To utilize the TensorFlow IPU integration, it is required to install the Graph-

core’s tailored version of TensorFlow. This specialized version of TensorFlow is de-

signed explicitly for the integration with IPUs. Despite maintaining compatibility

with the conventional TensorFlow API, the implementations within this IPU-specific

version are optimized to leverage the full potential of IPUs.

The integration of TensorFlow with IPU offers an attractive feature for devel-

opers, as it allows them to build TensorFlow models using the familiar API while

benefiting from the superior performance of IPU. This means that users do not need

to learn a new API or programming paradigm to leverage the power of the IPU. The

TensorFlow runtime identifies IPU-specific operations in the computation graph and

transforms them into an optimized low-level representation for execution on IPU.

This automatic optimization process allows users to take full advantage of the IPU’s

capabilities without needing to make manual modifications to their code.

It is crucial to keep in mind that while the integration of TensorFlow with IPU

offers notable performance advantages, not all standard TensorFlow functions are

mapped to an efficient lower-level kernel in the Poplar runtime. In scenarios where

Chapter 4: Methodology 38

such inefficiencies are encountered, end-users can leverage the option of designing

their custom operations at the Poplar level and integrate them into their TensorFlow

application, similar to the regular custom operations in TensorFlow. By pursuing

this approach, end-users can optimize the performance of their models further and

take full advantage of the comprehensive capabilities of the IPU hardware.

Besides expediting TensorFlow models, the outcome of the compilation process

yields an IPU program regardless of its construction method. Moreover, we gain the

ability to leverage debugging and profiling tools available in Graphcore PopVision,

facilitating the measurement of performance metrics and identification of potential

issues.

The initial step in executing and evaluating the aforementioned MOT model on

the IPU involved rewriting the model for the IPU platform. Given that the original

implementation relied on several dependencies, including PyTorch Lightning, and

considering that Lightning did not support the IPU backend at that time, I made

the decision to develop the model from scratch. This approach not only allowed

me to address compatibility issues but also provided an opportunity to deepen my

understanding of the model through hands-on implementation.

During the project’s inception, resources on constructing IPU models using

widely adopted deep learning frameworks were limited. However, the Graphcore

TensorFlow examples repository offered more practical insights and examples in

this context. Consequently, I chose to re-implement the model in TensorFlow specifi-

cally for the IPU, drawing inspiration from sample projects developed by Graphcore.

While the overall code structure closely aligns with conventional TensorFlow model

development, there are certain distinctions, such as the incorporation of a strategy

definition and modifications in data loading mechanisms.

I referenced a Graphcore implementation of TGNs optimized for the IPU archi-

tecture as a guide. This specialized version of TGN is tailored for enhanced perfor-

mance on the IPU. TGN itself falls under the category of GNNs designed specifi-

cally for modeling and analyzing dynamic or temporal graphs. At the time of my

research, Graphcore’s custom implementation of TGN for TensorFlow 1 stood out

as the most comprehensive example available, aligning well with the requirements

Chapter 4: Methodology 39

of a widely-used deep learning framework. Leveraging this project as a foundation

for my code development proved advantageous due to its clarity, encompassing cru-

cial components such as a train/evaluation loop, as well as efficient data input and

output queues. These elements greatly facilitated the streamlined management of

both training and evaluation processes.

4.1.1 Creation of graph inputs from MOT dataset

The input to the model consists of video segments, while the GNN requires graph

objects as its input. To generate these graph objects, a tracking method is employed.

During the tracking process, a frame window is selected to construct a single graph.

For each frame in the chosen video segment, all detections are transformed into

nodes, carrying the initial node embeddings as feature tensors. These nodes are

then interconnected, creating edges between them. The edge features are derived

by considering both the connected node features and the geometric data as edge

features, which includes the relative positions of the respective data points. In my

experiments, I used 15 frames per graph similar to the original implementation.

To mitigate unnecessary computational complexity, edges are pruned by remov-

ing those edges that connect nodes not present within their most similar 50 nodes

list. By forming these graphs, the model can be trained using message passing, and

subsequently, the edge features can be utilized in a fully connected layer for binary

classification, distinguishing active edges from inactive edges. An active edge signi-

fies that two detections belong to the same object. By leveraging these classification

results, the final trajectory of a pedestrian across frames can be constructed.

In this study, I utilized the authors’ code for creating graph datasets directly to

generate training graphs for my experiments. The code incorporates a pre-trained R-

CNN model, employed to generate initial node embedding features by processing the

image within the bounding box. The computation of initial edge features involves

considering the bounding box sizes of two detections (nodes in the graph) and the

time difference between the two frames. Furthermore, for the evaluation of machine

learning performance in the context of my IPU model, I leveraged the authors’

Chapter 4: Methodology 40

node1 node2

node4 node3

edge32

edge43

edge21

edge14

edge12

edge23

edge34

edge41

x1 x2

x4 x3

e21

e12

e34

e43

e32e23e41e14

(a)

Edge Index

x1

x2

x3

x4

Node FeaturesEdge Features

e12

e14

e23

e34

e21

e32

e41

e43

1
1
2
3
2
3
4
4

Edge Labels

1

0

1

0

0

0

0

0

2
4
3
4
1
2
1
3

(b)

Figure 4.1: (a) An example graph with 4 nodes (b) The same graph represented
with 4 tensors

implemented evaluation framework.

MOT datasets consist of some video segments involving pedestrians from random

city street views with people walking. The original model processes these segments

to generate graph objects which are then fed to the MPNN for training. Each input

graph consists of 4 tensors:

1. Edge List (The graph connectivity)

2. Node Features (An encoding of the node’s data represented as 2048 floats)

3. Edge Features (An encoding of the edge’s data represented as 6 floats)

4. Labels (Ground-truth binary values representing active/inactive edges)

The processing and graph creation are carried out using a window-based method,

as previously described. The default window size for this approach is set to 15 frames,

and the processing rate is at 6 frames per second (FPS).

Chapter 4: Methodology 41

4.1.2 Data Loading

In this section, we will first explain how data is typically loaded for GPU in Tensor-

Flow, and then we will discuss the specific considerations and changes required for

data loading when using TensorFlow for IPU.

Data Loading for GPU in TensorFlow

When loading data for the GPU in TensorFlow, the standard practice is to utilize

the ‘tf.data.Dataset‘ API, which provides a flexible and efficient way to build data

pipelines. The following steps outline the process of loading data for GPU:

1. Data Preparation: The dataset is initially organized in a suitable format,

such as TFRecord files, NumPy arrays, or other commonly used data for-

mats. Among these options, TFRecord files are often preferred due to their

exceptional I/O efficiency and streaming capabilities.

2. Data Pipeline Creation: The ’tf.data.Dataset’ API is harnessed to build a well-

structured data pipeline. This powerful API provides a range of methods for

reading, preprocessing, and batching data. Common operations include data

parsing, image decoding, resizing, normalization, shuffling, and batching.

3. Data Augmentation (Optional): To augment the diversity of the training

dataset and strengthen the model’s generalization capabilities, data augmen-

tation techniques can be employed. TensorFlow offers a variety of built-in

functions for augmenting data, including random cropping, flipping, rotation,

and color jittering. These operations can be seamlessly integrated into the

data pipeline.

4. Model Training and Evaluation: Once the data pipeline is constructed, it

is integrated into the training or evaluation loop of the model. During the

training process, batches of data are efficiently fed to the GPU, enabling the

model to iteratively update its parameters and optimize performance.

A code snippet illustrating the data loading process for GPU in TensorFlow has

been provided:

Chapter 4: Methodology 42

import tensorflow as tf

Step 1: Prepare the data

train_tfrecord_path = "path/to/train.tfrecord"

validation_tfrecord_path = "path/to/validation.tfrecord"

Step 2: Create a data pipeline

def parse_tfrecord_fn(serialized_example):

Parse and preprocess the data

...

train_dataset = tf.data.TFRecordDataset(train_tfrecord_path)

train_dataset = train_dataset.map(parse_tfrecord_fn)

train_dataset = train_dataset.shuffle(buffer_size=1000)

train_dataset = train_dataset.batch(batch_size=32)

train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

Step 3: Data augmentation (optional)

Apply data augmentation techniques if needed

Step 4: Model training and evaluation

for images, labels in train_dataset:

Model training with the batch of data

...

Listing 4.1: Pseudo-code of data loading process for GPU in TensorFlow

Data Loading for IPU in TensorFlow:

Data loading in TensorFlow for IPU involves a slightly different approach com-

pared to loading data for GPU.

1. Creating a TensorFlow Dataset as Input:

As explained in section 4.1.2.1, we represent an input graph with 4 tensors:

edge list, node features, edge features, and binary labels.

Tensor Size Standardization for IPU Efficiency: Before execution, Ten-

Chapter 4: Methodology 43

0 5000 10000 15000 20000 25000
Graph Index

0

2000

4000

6000

8000

10000

12000

14000
Ed

ge
 C

ou
nt

(a)

0 1000 2000 3000 4000 5000
Graph Index

5400

5600

5800

6000

6200

6400

6600

6800

Ed
ge

 C
ou

nt Truncated

Padded

(b)

Figure 4.2: (a) Number of edges per graph in the augmented dataset (b) Number
of edges per graph in the selected training dataset before padding and truncation
operations

sorFlow models are compiled into Poplar programs to be executed on the

IPU. When working with the IPU, using fixed-size tensors is crucial; other-

wise, it impedes static compilation, leading to multiple Poplar programs. For

instance, a model performing both training and validation will generate two

Poplar programs because the computations differ, as the validation omits the

backward pass. Similarly, tensors of varying sizes necessitate distinct Poplar

programs for each unique tensor size. This process is highly inefficient, as

it requires compiling and executing different programs for each data point.

Consequently, utilizing fixed-size tensors is required to allow static compila-

tion of Poplar programs, enabling consistent program use throughout training

and inference iterations. This constraint poses a challenge with GNNs, where

varying numbers of nodes or edges result in tensors of different shapes in sub-

sequent iterations. To address this, I engineered a solution to standardize the

number of nodes and edges across the dataset. Inspired by PopTorch Geomet-

ric (PyTorch Geometric for IPU), which sets a fixed node and edge count and

pads feature tensors accordingly, I replicated this methodology within the Ten-

sorFlow data loader. This ensures that all feature tensors across the dataset

maintain a fixed size, optimizing computational efficiency.

For nodes, with counts typically below 500 even for the largest graphs in the

Chapter 4: Methodology 44

dataset, I chose to pad smaller node counts to match the maximum node count.

In the case of edges, where the maximum edge count exceeds 10000, leading

to significant computational costs as they dominate the matrix multiplications

during training, and considering most experiments were conducted in a single

IPU setting, I had to limit the edge count to 6000. This decision was made to

optimize for training speed while maintaining a satisfactory level of accuracy.

Consequently, some graphs have fewer than 6000 edges, requiring padding,

while others have more, leading to edge cutting. Edge cutting involves the

removal of nodes with the highest node IDs, corresponding to the latest detec-

tions in the time axis. This allows for the processing of smaller video segments,

adjusting the length of the segment to be processed. This choice is made be-

cause setting the number of detections and, consequently, edges based on a

fixed number of frames for input graph creation is impractical. Therefore,

edge cutting is applied at this stage, ensuring a consistent number of edges

across the dataset for all graphs. As illustrated in Figure 4.2, the original

dataset exhibits a significant variance in edge counts across graphs. However,

standardizing edge counts in the presence of such high variability would be

inefficient due to excessive padding, leading to computationally meaningless

operations. Moreover, for truncated edges, it would result in substantial data

loss. To address this, I carefully selected a subset of the dataset with a consis-

tent number of edges for the edge count standardization process. Specifically, I

focused on a subset of 5000 graphs, each containing approximately 6000 edges,

as depicted in Figure 4.2b. This standardization enables the IPU to determine

the sizes of each computation during the training process at compile time,

allowing for static compilation which results in a single compiled program.

Loss mask: In addition to these tensors, each graph is accompanied by a

dedicated loss mask tensor. This loss mask serves as a crucial tool during loss

calculation, allowing for effective masking in response to the fixed-sized tensor

requirement. This requirement stems from the need to maintain a consistent

edge count across all processed input graphs, as explained previously. To fulfill

Chapter 4: Methodology 45

this condition, padding is applied by introducing additional edges when the

count falls below the chosen fixed edge size. During this edge-padding process,

which involves the insertion of dummy edges, it is imperative to exclude these

padded edges from the loss calculation. To seamlessly achieve this, an indi-

vidual loss mask tensor is assigned to each graph with the size of edge count.

This binary tensor is structured to assign a value of 1 to edges representing

actual connections and 0 to padded edges, effectively segregating the essential

structural elements from those introduced solely for padding purposes. I apply

the loss mask in the last step of loss calculation, multiplying it with the loss

tensor. This yields refined final losses, eliminating the impact of padded edges.

Creation of tf.data.Dataset: During the data loading phase, each in-

put graph generates the mentioned five tensors, which are then appended

to their respective lists. Subsequently, these tensors are utilized to construct

a tf.data.Dataset object through the tf.data.Dataset.from generator()

method. The choice of this method is crucial, as alternatives like tf.data.Dataset.from

tensor slices can encounter memory limits, particularly with large datasets.

In my specific scenario, attempting to use from tensor slices led to ten-

sor creation exceeding 2 GBs, resulting in a "ValueError: Cannot create

a tensor proto whose content is larger than 2GB." error. This issue

arises because the method stores the dataset as tf.constants, embedding them

within the computational graph, which is both memory-inefficient and can sur-

pass tensor size limits. Consequently, I switched to tf.data.Dataset.from

generator, which operates similarly to Python generators, allowing the dataset

elements to be yielded on-the-fly. This approach enabled me to load all dataset

elements without creating excessively large tensors. Moreover, as I leverage

this in conjunction with tensorflow.python.ipu.loops and IPUInfeedQueue,

it establishes an efficient data consumption model. The from generator func-

tion produces a dataset whose elements are dynamically generated by a gener-

ator. Paired with IPUInfeedQueue, it facilitates IPU access to data, utilizing

memory efficiently compared to embedding tf.constants in the graph.

Chapter 4: Methodology 46

Below code fragment shows the creation of tf.data.Dataset from input graphs:

def generate_graph_data():

for index in range(graph_count):

yield (

(

adjacency_indices_list[index], # Edge pairs in the graph

node_features_list[index], # Node features

edge_features_list[index], # Edge features

),

binary_labels_list[index], # Binary labels

binary_loss_mask_list[index], # Binary loss mask

)

Creating TensorFlow Dataset using from_generator

tf_dataset = tf.data.Dataset.from_generator(

generate_graph_data,

output_shapes=(

(

(edge_count, 2), # Shape of adjacency indices

(node_count, 2048), # Shape of node features

(edge_count, 6), # Shape of edge features

),

(edge_count, 1), # Shape of binary labels

(edge_count,), # Shape of binary loss mask

),

output_types=(

(

tf.int32,

tf.float32,

tf.float32,

),

tf.int32,

tf.int32,

)

)

Listing 4.2: Pseudo-code of data loading process for IPU in TensorFlow

Chapter 4: Methodology 47

2. Setting Up an IPUInfeedQueue and IPUOutfeedQueue:

Specifically, as explained in section 2.3.6, the main I/O constructs in IPU are

IPUInfeedQueue and IPUOutfeedQueue. The IPUInfeedQueue establishes a

host-device queue for efficient input data transfer. In terms of computation,

this results in the addition of I/O operations to the computation graph.

As explained in the section 2.3.5.1 Looping Utilities, IPUOutfeedQueue objects

can be passed to a loop of type tensorflow.python.ipu.loops as argument

and the loop dequeues dataset elements automatically from the queue.

4.1.2.1 Optimized Data Loading Using Pickle Files

Without this optimization, the data loader underwent a lengthy process of loading

thousands of graph input files, applying preprocessing such as paddings and edge

cuttings, creating the loss mask tensor, and collecting these five tensors for each

graph to generate the tf.data.Dataset object. In my development environment, this

process extended beyond 2 hours. To expedite experiments, I implemented a strat-

egy to create a pickled version of the dataset after its initial preprocess and loading

using the pickle library. Subsequently, I loaded only this pickle file for each experi-

ment. This adjustment significantly reduced the data loader’s execution time to only

a few seconds. Consequently, this optimization has accelerated the experimentation

phase, allowing for faster and more efficient execution of experiments.

4.1.3 Model Structure

The reference study [Brasó and Leal-Taixé, 2020] introduces a MPNN framework

comprising four distinct networks responsible for updating embeddings, including

three for nodes and one for edges. Specifically, two of the node models (N fut
v and

N past
v) are leveraged to construct a time-aware node model, a significant aspect

emphasized by the authors. By integrating an understanding of time, the model

incorporates two separate MLPs. - one dedicated to the future (N fut
v) and the

other to the past (N past
v). These MLPs effectively utilize the temporal information

encoded in a node’s neighbors, differentiating between the impact of future and past

Chapter 4: Methodology 48

interactions. This time-aware approach enhances the model’s capacity to capture

and analyze the temporal dynamics inherent in the graph data, thus contributing to

the overall efficacy of the MPNN framework as presented in the paper. Using these

two networks, the past and the future embeddings for nodes are computed. The

final updated node embedding is calculated by the third MLP for nodes, namely,

Nv, using the computed future and past embeddings as inputs. The fourth MLP

(Ne) is used to calculate edge embeddings. It considers the node embeddings of the

2 nodes that it connects, as well as the current edge embedding as inputs to (Ne)

to calculate edge embedding at the next time step.

Table 4.1: Message Passing Network. The layer count and input/output dimensions
are provided for each MLP. ”FC” indicates a fully connected layer.

Past Update (Npast
v)

0 Input 80

1 FC+ReLU 56

2 FC+ReLU 32

Future Update (N fut
v)

0 Input 80

1 FC+ReLU 56

2 FC+ReLU 32

Node Update (Nv)

0 Input 64

1 FC+ReLU 32

Edge Update (Ne)

0 Input 160

1 FC+ReLU 80

2 FC+ReLU 16

The model structure in this work consists of two parts: the Message Passing

Network as shown in Table 4.1, and the Classifier as illustrated in Table 4.2. This

architecture is akin to the one proposed in [Brasó and Leal-Taixé, 2020].

Chapter 4: Methodology 49

Table 4.2: Classifier MLP. Applies binary classification to edges based on edge
features into active or inactive edges.

Edges (Nclass
e)

0 Input 160

1 FC+ReLU 80

2 FC+Sigmoid 1

• 2 encoder MLPs: One MLP is dedicated to processing node information, while

the other focuses on edge information. These MLPs provide the initial node

and edge embeddings, respectively.

• 4 update MLPs: There are three update MLPs specifically designed to update

node representations within the MPNN. Additionally, there is a single update

MLP that handles edge embeddings used in the Message Passing Network.

• 1 edge classifier MLP: This MLP performs binary classification over the output

of the Message Passing Network, allowing for prediction and decision-making

based on the processed information.

• The edge classifier MLP conducts binary classification on the output of the

MPNN. This enables the model to make predictions and decisions by leveraging

the processed information from the network.

4.1.3.1 Linear Layer

In the implementation of the model based on the TGN-IPU codebase, a custom

linear layer was utilized. This layer was incorporated to align with the model’s

architecture as described in the original paper, which includes MLPs with linear

layers. The linear layer performs linear transformations on the input data using

matrix multiplication with learnable weights and bias terms. The implementation

of the linear layer is as follows:

@scoped_fn

Chapter 4: Methodology 50

def linear(input: tf.Tensor,

n_output: int,

use_bias: bool = True) -> tf.Tensor:

"""A standard linear layer ‘W x + b’."""

weight = tf.get_variable(

"weight",

dtype=input.dtype,

shape=(input.shape[-1], n_output),

initializer=tf.glorot_normal_initializer(),

)

output = input @ weight

if use_bias:

bias = tf.get_variable(

"bias",

dtype=input.dtype,

shape=(n_output,),

initializer=tf.zeros_initializer(),

)

output += bias

return output

Listing 4.3: Pseudo-code of implementation of the linear layer

4.1.4 Training Loop Setup

As outlined in the Section 2.3.5.1, we utilize tensorflow.python.ipu.loops.repeat

method to prevent multiple calls to session.run. This method takes the infeed

queue as a parameter and handles fetching data to the IPU automatically.

def run_loop():

infeed = ipu.ipu_infeed_queue.IPUInfeedQueue(dataset, prefetch_depth=4)

outfeed = ipu.ipu_outfeed_queue.IPUOutfeedQueue()

with ipu.scopes.ipu_scope("/device:IPU:0"):

ipu.ipu_compiler.compile(

lambda: ipu.loops.repeat(self.steps, loop_body, infeed_queue=infeed),

Chapter 4: Methodology 51

{}

)

...

session.run(run_loop)

Listing 4.4: Pseudo-code for the IPU training loop runner

4.2 Adapting Code for IPU: Implementation Changes and Optimiza-

tion Strategies

While rewriting the model for using on the IPU in TensorFlow, I applied several

optimizations to make the model run faster on the IPU. In this section, I list some

examples of these optimizations.

MetaLayer:

In forward pass of MetaLayer in the original PyTorch implementation, there is

a part where the model uses edge index to index the tensor x by first row and then

by column dimension to be passed to edge model:

row, col = edge_index

edge_attr = self.edge_model(x[row], x[col], edge_attr)

Listing 4.5: Part of MetaLayer in the original implementation. Taken from [Brasó

and Leal-Taixé, 2020]

I implemented this part as follows:

row, col = tf.split(edge_index, 2, axis=-1)

index = tf.concat([row, col], 1)

features = grouped_gather(params=x, indices=index) # Equivalent to calling

tf.gather(x, index, axis=1, batch_dims=1)

x_row, x_col = tf.split(features, 2, axis=1)

edge_attr = edge_model(x_row, x_col, edge_attr)

Listing 4.6: Part of MetaLayer rewritten in TensorFlow

Chapter 4: Methodology 52

Here I employ two optimizations, first, making a single call to gather function

instead of 2 separate calls. I achieve this by first concatenating splitted row and

col indices and using it to index the x tensor. The result of this indexing is then

splitted to get separate x row and x col tensors. This optimization improves the

speed by reducing the number of calls to gather functions. Secondly, instead of

using the default tf.gather function, I utilize the grouped gather function which in-

ternally calls a custom operation developed by Graphcore as it is significantly faster.

TimeAwareNodeModel:

I incorporated similar optimizations during the implementation of my iteration

of the TimeAwareNodeModel. This model is pivotal to the overall architecture,

responsible for computing flows independently from past and future nodes at each

node. The final node embedding is determined by concatenating these flows and

feeding the result as input to the node mlp (formally denoted as Nv). Below, I

present both the original forward pass implementation and the TensorFlow version

optimized for IPU, delving into the introduced optimizations.

def forward(self, x, edge_index, edge_attr):

row, col = edge_index

flow_out_mask = row < col

flow_out_row, flow_out_col = row[flow_out_mask], col[flow_out_mask]

flow_out_input = torch.cat([x[flow_out_col], edge_attr[flow_out_mask]],

dim=1)

flow_out = self.flow_out_mlp(flow_out_input)

flow_out = self.node_agg_fn(flow_out, flow_out_row, x.size(0))

flow_in_mask = row > col

flow_in_row, flow_in_col = row[flow_in_mask], col[flow_in_mask]

flow_in_input = torch.cat([x[flow_in_col], edge_attr[flow_in_mask]], dim=1)

flow_in = self.flow_in_mlp(flow_in_input)

flow_in = self.node_agg_fn(flow_in, flow_in_row, x.size(0))

flow = torch.cat((flow_in, flow_out), dim=1)

Chapter 4: Methodology 53

return self.node_mlp(flow)

Listing 4.7: Forward pass of TimeAwareNodeModel in the original implementation.

Taken from [Brasó and Leal-Taixé, 2020]

In my implementation, it is implemented as a function, receiving different pa-

rameters.

@scoped_fn

def time_aware_node_model(

x: tf.Tensor,

row: tf.Tensor,

col: tf.Tensor,

edge_attr: tf.Tensor,

x_col: tf.Tensor=None,

) -> tf.Tensor:

x_out_col, x_in_col = tf.split(x_col, 2, axis=1)

edge_attr_out_masked, edge_attr_in_masked = tf.split(edge_attr, 2, axis=1)

flow_out_row, flow_in_row = tf.split(row, 2, axis=1)

flow_out_row, flow_in_row = tf.expand_dims(flow_out_row, 2),

tf.expand_dims(flow_in_row, 2)

def get_flow(flow_mlp, x_col, edge_attr_masked, flow_row, out_shape):

flow_input = tf.concat([x_col, edge_attr_masked], axis=2)

flow = flow_mlp(flow_input)

flow = grouped_scatter_sum(data=flow, indices=tf.squeeze(flow_row,

axis=-1), table_size=out_shape)

return flow

flow_out = get_flow(flow_out_mlp, x_out_col, edge_attr_out_masked,

flow_out_row, x.shape[1])

flow_in = get_flow(flow_in_mlp, x_in_col, edge_attr_in_masked, flow_in_row,

x.shape[1])

flow = tf.concat([flow_in, flow_out], axis=2)

return node_mlp(flow)

Chapter 4: Methodology 54

Listing 4.8: Optimized implementation in TensorFlow using grouped scatter sum

for aggregating messages from incident edges

The first optimization is passing already computed parameters to the function

instead of raw parameters. Specifically, instead of passing only x, edge index and

edge attr tensors, I pass x, row, col, edge attr and x col. Here, row and col are

splitted columns from the edge index. Since they are previously computed, I di-

rectly pass them as parameters. x col is x tensor indexed by col and is also already

computed previously. Passing these already computed parameters helps reduce com-

putational cost.

Secondly, in edge index tensors, upper-half indices correspond to “out flow”, that

is, the “row” column has a value smaller than the “column” column, and lower-half

indices correspond to “in flow”, that is, the “row” column has a value greater than

the ’column’ column. Using this information, we can use tf.split operation to split

the row tensor in half in vertical dimension to get flow out row and flow in row

instead of using two costly gather operations such as tf.gather(row, tf.where(row <

col)) and tf.gather(row, tf.where(row > col)). The same idea was used to compute

x out col and x in col as well as edge attr out masked and edge attr in masked.

Thirdly, I use grouped scatter sum as the aggregation function which was im-

plemented by Graphcore and works more efficiently than tf.tensor scatter nd add

on IPU.

These optimizations significantly accelerated the execution of this model on the

IPU, resulting in improved performance.

4.2.1 Optimization of the GNN Message Passing Process

The process of message-passing is a fundamental component of MPNs, which serves

as a central mechanism in various applications, including MOT. The message-passing

approach involves propagating messages iteratively across the graph’s nodes, thereby

enabling the nodes’ feature vectors to be updated based on the received messages.

The computational aspect of this process is carried out through scatter and gather

Chapter 4: Methodology 55

operations. During my analysis of the training process using the PopVision tool, I

discovered that the IPU cycles spent on gather and scatter operations dominated

the computation. This observation aligns with expectations, considering that these

operations are the primary computational workload for MPNs. Hence, it becomes

imperative to execute these operations efficiently on the IPU for optimal perfor-

mance.

4.2.1.1 Grouped Gather vs tf.gather

During the process of transitioning the model from PyTorch to TensorFlow, I re-

placed the PyTorch indexing operator with tf.gather() as a substitution. For

example, the expression x[flow] (where x and flow are tensors) was translated as

tf.gather(x, flow), assuming that tf.gather could be efficiently executed on the IPU.

However, it should be noted that not all standard TensorFlow library functions have

optimized kernels for the IPU. In my experimental analysis, using tf.gather() resulted

in significantly longer execution times compared to efficient gather implementations,

leading to higher inter-tile communication within the IPU.

For optimizing gather operations, various approaches were explored initially.

These methods are detailed in the following section. Subsequently, a solution

provided by Graphcore was adopted for enhanced efficiency. Graphcore devised

a specialized implementation for grouped gather and scatter operations, designed

to outperform conventional TensorFlow operations. The core functionality of this

solution is implemented in C++, with a Python wrapper invoking the compiled

code, as regular Tensorflow custom operations. Within the C++ implementation,

custom methods from popops, Graphcore’s tensor operation library, are utilized. To

be specific, the grouped gather operation invokes popops::groupedMultiSlice,

while grouped scatter max calls the groupedMultiUpdateMax function. Compara-

tive evaluations demonstrate that these custom operations significantly outperform

their TensorFlow counterparts, specifically tf.gather and tf.scatter max opera-

tions. This optimized solution has been integrated into the project code, providing

a substantial boost in performance for gather and scatter operations [Graphcore,

Chapter 4: Methodology 56

2022].

4.2.1.2 Investigating Other Optimization Strategies

For our application model, gather operation plays a pivotal role in the message pass-

ing of GNNs, enabling the collection and aggregation of messages from neighboring

nodes for each node in the graph. Given the challenges mentioned in the previous

section about using standard tf.gather operation in Tensorflow on IPU, I initially

examined an alternative approach, inspired by the fused gather operation mentioned

in [Zhang et al., 2020]. It’s important to note that this exploration occurred be-

fore Graphcore’s introduction of the optimized grouped gather operation. The idea

involved constructing a vertex-to-edge matrix, which was then multiplied with the

edge feature matrix. The vertex-to-edge matrix is a binary, 2-D representation with

dimensions (node count, edge count), where a value of 1 indicates the presence of

an edge connecting a vertex, and 0 indicates no connection. The result of this mul-

tiplication is equivalent to a gather operation with summation as the aggregation

function. However, the vertex-to-edge matrix is highly sparse, with only 1
node count

filled entries. To efficiently execute this methodology, a sparse-dense matrix mul-

tiplication that can accommodate an additional (batch) dimension was necessary.

At that time, neither the standard TensorFlow operations nor the Graphcore SDK

provided ready-made functions for such an operation. Additionally, even if such a

support were available in TensorFlow, specialized IPU targeting would still be nec-

essary for optimal performance. Consequently, substantial efforts were devoted to

crafting a customized rank-3 sparse-dense matrix multiplication operation designed

for optimal IPU utilization, serving as a custom operation for TensorFlow for IPU.

The example in Figure 4.3 shows the construction of a node-to-edge matrix. By

performing matrix multiplication between this matrix and an edge feature matrix,

we effectively compute the gather operation using summation as the aggregation

function.

While this custom multiplication operation was more efficient than using tf.gather

due to its internal use of Poplar library functions for multiplication, the subsequent

Chapter 4: Methodology 57

A B

C

E1

E2 E3E4
E1 E2 E3 E4

Node A 0 1 0 1

Node B 1 0 0 0

Node C 0 0 1 0

Figure 4.3: Graph Representation with Adjacency Matrix. A, B and C are nodes;
E1, E2, E3 and E4 are edges. For each directed edge, a 1 value is added to the
corresponding location at the matrix.

introduction of grouped gather proved even more efficient. This led me to shift from

my initial method to adopting grouped gather for message passing.

4.3 Training

For the training phase, the Adam optimizer was selected with the following hyper-

parameters: β1 = 0.9, β2 = 0.999, and ϵ = 3× 10−4.

I employ the identical loss configuration as the original model. The labels are

highly imbalanced, with positive edges constituting less than 4% of the total. Conse-

quently, Weighted Binary Cross-Entropy was used to account for imbalance. In each

batch, the loss function dynamically computes the ratio of negative to positive edges.

This ratio is then supplied as the pos weight parameter to the tf.nn.weighted

cross entropy with logits function. The resulting loss is further refined by mul-

tiplying it with a loss mask tensor, eliminating the influence of padded edges to the

training process.

A comprehensive discussion pertaining to the training process has been provided

in Chapter 5.

4.3.0.1 Parallelization

IPU offers ways to utilize model and data parallelization.

Data Parallelization

Chapter 4: Methodology 58

Using TensorFlow interface, it is possible to set number of IPU’s to use by simply

setting:

config = utils.ipu.config.IPUConfig()

config.auto_select_ipus = NUMBER_OF_IPUS

config.configure_ipu_system()

Listing 4.9: Pseudo-code of setting number of IPUs

This configuration’s default behavior involves replicating the model across multi-

ple IPUs for data parallelization. Initially, the expectation was that this setup would

not only duplicate the model on each IPU but also efficiently distribute the train-

ing data among them, thereby accelerating the training process. However, through

empirical observations in my experiments, it became evident that, despite the auto-

matic allocation of multiple IPUs and model replication, the data distribution did

not align with the anticipated optimization.

Contrary to the envisioned scenario, this setup unexpectedly resulted in an in-

crease in overall training time proportional to the number of IPUs. This unexpected

outcome can be attributed to the concentration of all processing on a single IPU,

without explicit configuration for effective data distribution among the allocated

nodes. It’s likely that an incorrect configuration played a role in this suboptimal

performance. I am currently in contact with Graphcore support to seek clarification

and resolution for this issue.

Model Parallelization

For model parallelization, IPU supports sharding and pipelining. Since it was

out of the scope of this work, I left them as future work.

Chapter 5: Experiments and Results 59

Chapter 5

EXPERIMENTS AND RESULTS

5.1 Dataset and Testbed (Simula machines)

The original model employs sequences from MOT15 and MOT17 datasets for train-

ing. For simplicity, I utilized the graph builder from the original implementation

and used those graphs for both training and evaluation.

I conducted my experiments on Simula’s high-performance computing cluster,

eX3, accessible at [ex3, 2024]. The experiments were run on GPUs, IPU, and CPU

nodes to compare the performance of the models on four different hardware config-

urations. The specifications of the GPUs, IPU, and CPU resources are as follows:

Table 5.1: Processor specifications of Graphcore GC200, NVIDIA Tesla V100-SXM3
and A100 SXM gathered from [Shekofteh et al., 2023], [Graphcore, 2020]

.

Name Cores Memory FP32 FLOPS TDP

GPU A100 SXM 6912 80GB 19.5 TFLOPS 400 W

GPU Tesla V100-SXM3 5120 32GB 16.35 TFLOPS 350 W

IPU Colossus Mk2 GC200 1472 900MB SRAM 62.5 TFLOPS 150 W

CPU Intel Xeon Platinum 8168 24 754GB (System) - 205W

The comparison in 5.1 underscores distinct differences among four computing

devices: A100 SXM GPU, Tesla V100-SXM3 GPU, Colossus Mk2 GC200 IPU, and

Intel Xeon Platinum 8168 CPU. Notably, the A100 SXM GPU stands out for its

expansive memory capacity and high compute performance, while the Tesla V100-

SXM3 GPU offers a balance between performance and power efficiency. In contrast,

the Colossus Mk2 GC200 IPU prioritizes exceptional compute performance and

Chapter 5: Experiments and Results 60

lower power consumption. Meanwhile, the Intel Xeon Platinum 8168 CPU distin-

guishes itself with its expansive system memory capacity, offering an architecture

tailored to accommodate a wide range of computational tasks. Each device repre-

sents a distinct trade-off in compute power, memory capacity, and power efficiency,

catering to diverse computational requirements.

5.2 Metrics for Evaluation

5.2.1 ML Performance Comparison: IPU vs. GPU

1. Precision: Measure of the accuracy of positive predictions. High precision

indicates a low false-positive rate.

2. Recall: Measure of the ability to capture all positive instances. High recall

indicates a low false-negative rate.

5.2.2 Computing Performance Comparison: IPU vs. GPU

• Total Training Time: Measures the total time taken for the model to com-

plete training. Lower training times are preferable.

• Average Inference Time: Calculates the average time taken for the model

to perform inference. Lower average inference times are desirable.

• Number of Epochs for Convergence: Measures the number of training

epochs required for the model to converge. Fewer epochs to convergence indi-

cates faster training.

5.3 Performance Comparison: MOT Neural Solver vs Our Model

I used the same sequence to generate the dataset for both IPU and GPU experiments,

namely MOT17-09-SDP. When using parameters max detects = 500 (maximum

number of detections allowed) and frames per graph = 15 it creates 5000 training

and 100 validation graphs with 6000 edges for this sequence using the previously

explained graph generation method.

Chapter 5: Experiments and Results 61

Table 5.2: Model ML Performances Comparison after 100 epochs on validation set

Metric MOT Model on IPU MOT Neural Solver

Precision 0.58 0.698

Recall 0.51 0.655

1 10 20 30 40 50 60 70 80 90 100
Epoch number

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Tr
ai

n/
va

lid
at

io
n

Lo
ss

val loss
train loss

Figure 5.1: Train and validation loss graphs for IPU (batch size = 4)

In the comparison in Table 5.2, I evaluate the training precision and recall of the

original model running on a GPU against our model on an IPU after 100 epochs.

Notably, our model exhibits lower performance compared to the original model at

the 100th epoch using the same learning rate 3× 104. This observation aligns with

our expectations, given that our implementation employs fixed-size graphs, requiring

the removal of edges from certain input graphs. Despite the slower learning pace,

our model demonstrates the ability to train and learn from the input data.

Figure 5.1 displays how the training and validation losses changed over 100 train-

ing epochs during training of the MOT model on the IPU. The training loss shows

how well the model predicts outcomes within the data it learned from, while the

validation loss represents the error on data not used for training.

Initially, we observe a significant improvement in both metrics, demonstrating

that the model is rapidly learning from the data. As the epochs continue, the rate

of improvement slows down, indicating that the model is getting closer to a stable

state where it’s not gaining much additional insight. This trend indicates that the

Chapter 5: Experiments and Results 62

1 2 4 8 16
Batch size

0

50

100

150

200

250

Av
er

ag
e

tra
in

in
g

tim
e

pe
r e

po
ch

 (s
)

IPU
GPU_V100
GPU_A100

(a)

1 2 4 8 16
Batch size

2

4

6

8

10

12

14

Sp
ee

d
up

 ra
tio

 ti
m

e
(G

PU
/IP

U)

Reference Line = 1

GPU_V100/IPU
GPU_A100/IPU

(b)

Figure 5.2: (a) Comparison of average training times between IPU and GPUs as a
function of batch size. (b) Speed up ratio of GPUs and IPU as a function of batch
size. The red horizontal line represents a reference value of 1.

model is converging towards an optimal solution, where additional cycles may only

lead to slight improvements.

The experimental setup was optimized to employ a batch size of 4, since this

batch size was found to be the most efficient for the IPU during these experiments.

Several considerations guided this decision: larger batch sizes exceeding 16 caused

out-of-memory errors due to the memory constraints of single IPU, while batch

sizes smaller than 4 slowed down the training process. Intermediate batch sizes of

8 and 16 were also evaluated but led to a decline in the overall model accuracy.

Consequently, a batch size of 4 was the optimal trade-off between computational

efficiency and model performance. This choice aims to minimize memory issues and

prevent the reduction in accuracy observed with larger batch sizes.

In my experiments, I conducted a comparative analysis to evaluate the perfor-

mance of GPUs, including an NVIDIA V100 and the NVIDIA A100, followed by

the Graphcore IPU MK2. The training sessions involved varying batch sizes of 1, 2,

4, 8, and 16, spanning 100 epochs to calculate the average training time. To ensure

accuracy and consistency in the results, the initial ten epochs were omitted from the

calculation to mitigate the influence of the initial device warm-up period, following

the methodology outlined in [Nasari et al., 2022].

In the experiment shown in Figure 5.2, I have conducted a comparative analysis

Chapter 5: Experiments and Results 63

between my version of the model implemented using TensorFlow and run on an

IPU, and the original model[Brasó and Leal-Taixé, 2020] developed with PyTorch

and executed on GPU. The two implementations have identical layer architectures

and an equivalent number of parameters. Furthermore, the same dataset is utilized

across both experiments to ensure consistency in the comparison.

Figure 5.2a illustrates the average training time per epoch as a function of batch

size for both IPUs and GPUs. It is evident from the graph that as the batch size

increases, the average training time for both types of processors decreases. This

trend is consistent with the parallel processing capabilities of both IPUs and GPUs,

where larger batch sizes allow them to utilize the processor’s resources more effi-

ciently. Notably, the IPU consistently outperforms the GPU across all batch sizes,

particularly notable in the context of smaller batch sizes.

Figure 5.2b illustrates the speed-up ratio of GPU to IPU training times across

various batch sizes. Initially, the IPU exhibits a significant speed advantage, notably

prominent with a batch size of 1, where it outperforms the A100 and V100 by around

11 and 14 times, respectively. However, as the batch size increases, this advantage

diminishes, stabilizing at approximately 3 and 5 times faster for A100 and V100,

respectively, for batch sizes exceeding 4. The convergence towards a ratio of 4

suggests that as the batch size grows, the performance gap between IPUs and GPUs

narrows, consistent with the findings in [Arcelin,].

These findings underscore an important trend: GPU performance experiences

a decline when operating with smaller batch sizes. This outcome aligns with the

intrinsic design of GPUs, optimized for efficient handling of extensive parallelism,

with larger batch sizes presenting increased opportunities for concurrent computa-

tion. The observed shift towards GPU competitiveness in larger batches can be

attributed to several factors. The larger batch size significantly enables more paral-

lel execution of instructions, which matches well with the GPU’s architecture that

is built to take advantage of parallel processing capabilities. Moreover, larger batch

sizes help decrease kernel overhead. The overhead associated with launching ker-

nels diminishes on average per data point as the batch size increases. Additionally,

increased batch sizes facilitate a more effective utilization of the existing memory

Chapter 5: Experiments and Results 64

12 4 8 16 32 64
Batch size

50

100

150

200

250

Av
er

ag
e

tra
in

in
g

tim
e

pe
r e

po
ch

 (s
) GPU_V100

GPU_A100

Figure 5.3: Average training time for V100 and A100 as a function of batch size.

bandwidth, thereby contributing to further enhancements in overall performance.

The analysis in Figure 5.3 focuses on how different batch sizes impact the average

training time per epoch, specifically in experiments conducted using the original

model using PyTorch running on V100 and A100 GPUs. It should be pointed

out that the matching IPU program runs into an “Out of Memory” error when

the batch size goes past 16 in the single IPU configuration. However, the NVIDIA

GPUs that I utilized for these experiments have significantly larger memory capacity,

which permits the use of larger batch sizes, as emphasized in [Nasari et al., 2022],

necessitating the presentation of the GPU results exclusively in a separate graph.

The horizontal axis of this graph scales batch sizes logarithmically, providing a

comprehensive perspective of their impact across a wide range. Conversely, the

vertical axis quantifies the average training time per epoch in seconds, offering a

direct measure of computational efficiency.

Initially, when using small batch sizes, we see a sharp drop in the amount of time

per epoch needed for training. This region shows that the GPU is underutilized,

since the computational work required to set up each batch is not spread out over

enough data points to be efficient. In practical terms, this implies that the parallel

processing units of the GPU are in a state of awaiting data, resulting in idle cycles

and, consequently, extended training durations.

Chapter 5: Experiments and Results 65

As the batch size increases, the graph depicts a notable reduction in training

time, demonstrating the advantages of increased parallel processing. Within this

intermediate range, the GPU demonstrates its capability to concurrently process

multiple training examples, leading to an enhanced and more efficient training pro-

cess. The significant decrease in time is indicative of the reduced overhead per

example and the efficient utilization of the GPU’s computational cores.

The graph further indicates that beyond a certain point, the benefits of increas-

ing the batch size begin to wane. This plateau area is especially informative, as it

indicates the GPU’s approaching computational limits. In this context, the bottle-

neck emerges in the form of memory bandwidth—the rate at which data can be read

from or stored into memory. Furthermore, factors such as synchronization issues and

the constraints of data transfer rates over the PCIe bus between the host and the

GPU may contribute to the observed leveling off.

We also observe that the computational efficacy of the A100 surpasses that of

the V100. While the initial scalability performance exhibits similarity between the

two architectures, the A100 demonstrates a superior peak performance, leading to a

reduction of approximately 30% in epoch training duration upon reaching a plateau

in computational time.

Table 5.3: Average train/inference time per epoch comparison of IPU using tf.gather
and grouped gather with the effect of enabling PopVision for batch size=4.

Method used
IPU (using tf.gather) IPU (using grouped gather)

Train Time Inference Time Train Time Inference Time

Without PopVision 55.26 2.42 15.5 2

With PopVision Enabled 115.5 5.34 18.44 2.44

The table 5.3 provides a quantitative analysis of the performance impact when

using Graphcore’s IPU with TensorFlow’s tf.gather operation versus the optimized

grouped gather. Moreover, it illustrates the additional overhead introduced when

utilizing the PopVision profiling tool during both training and inference.

When comparing the two methods, the use of tf.gather demonstrates a notable

Chapter 5: Experiments and Results 66

IPU (using tf.gather) IPU (using grouped.gather)0

10

20

30

40

50
Tr

ai
ni

ng
 ti

m
e

(s
ec

)

(a)

IPU (using tf.gather) IPU (using grouped.gather)0.0

0.5

1.0

1.5

2.0

2.5

In
fe

re
nc

e
tim

e
(s

ec
)

(b)

Figure 5.4: (a) Average training time comparison of IPU using tf.gather and grouped
gather for batch size=4. (b) Average inference time comparison of IPU using
tf.gather and grouped gather for batch size=4.

increase in training and inference time upon enabling PopVision. Specifically, train-

ing time nearly doubles shifting from 55.26 to 115.5 units, while the inference time

more than doubles, escalating from 2.42 to 5.34 units. This implies that there is a

significant performance penalty because of the extra computations and data logging

that PopVision entails. When PopVision analyzes this operation, it comes across a

larger number of lower-level operations and interactions that need to be documented

and examined, resulting in a greater overhead.

On the other hand, when using the optimized grouped gather, the extra cost

brought on by PopVision is less noticeable, with training time increasing from 15.5

to 18.44 units and inference time from 2 to 2.44 units. This indicates that the

grouped gather operation, since it is an enhancement over the regular tf.gather,

lessens the effect of profiling to a certain degree.

The data demonstrates that although profiling with PopVision offers valuable

insights for performance tuning, it also imposes a noticeable computational cost for

complex computations.

The graphs in Figure 5.4 contrasts the average training and inference times on

an IPU when utilizing the standard TensorFlow tf.gather against the optimized

grouped gather, which was explained in the Section 4.1.8.1. This optimized gather

function is critical, as the standard tf.gather was found to be inefficient due to a

lack of specialized kernels for the IPU, leading to excessive communication between

Chapter 5: Experiments and Results 67

CPU GPU_V100 GPU_A100 IPU0

100

200

300

400

500

600

Ti
m

e
(s

ec
)

Batch size=1
Batch size=2
Batch size=4
Batch size=8
Batch size=16

Figure 5.5: Comparison of average training time across CPU, GPU, and IPU for
varying batch sizes (1, 2, 4, 8, 16).

tiles and longer run times.

The left side in the figure, which shows the performance using tf.gather, has

longer durations for both training and inference. This highlights the need for opera-

tions optimized for particular hardware architectures, since standard functions may

not make full use of the hardware’s capabilities. In contrast, the right side of the

figure illustrates the impact of employing the grouped gather operation provided

by Graphcore. This implementation leverages the popops library, a part of Graph-

core’s custom operations, which are detailed in the aforementioned section. The

grouped gather operation reduces the execution time for both training and infer-

ence. Training time is particularly improved, indicating a substantial performance

boost, whereas the speedup in inference is limited as it does not perform a backward

pass and is affected less by this improvement.

The results presented in this figure validate the discussions from Section 4.1.8.1

on the benefits of using specialized operations over standard ones. By integrating

the grouped gather into the model’s training and inference pipeline has led to a sig-

nificant enhancement in efficiency, underscoring the significance of hardware-aware

optimizations in machine learning workflows.

Chapter 5: Experiments and Results 68

The graph in Figure 5.5 provides a visual representation of the average training

and inference times across three types of computing devices: CPU, GPUs, and IPU.

Starting with the CPU, it’s clear that it takes significantly longer to perform

both training and inference tasks compared to GPUs and IPUs. This discrepancy is

likely due to the CPU’s general-purpose design, which is tailored for a diverse array

of computing tasks but lacks optimization for the parallel processing requirements

inherent in machine learning algorithms.

Moving to the GPU, there is a clear decrease in the time it takes to train the

model. GPUs are designed for parallel processing, which works well with the needs of

machine learning calculations that involve processing large sets of data at the same

time. This design facilitates a significant acceleration in machine learning tasks. It

is important to highlight that, beyond a batch size of 8, increasing batch size does

not yield substantial additional speed gains. The A100 and V100 architectures ex-

hibit comparable scaling characteristics; however, across all batch sizes, the training

durations on the A100 are shorter in comparison to those on the V100.

The IPU presents the most efficient training times among the three hardware

types. This efficiency can be attributed to the IPU’s capability to operate optimally

with smaller batch sizes, as emphasized in this study [Mohan et al., 2020]. The re-

markable performance of the IPU in training, evident in the graph, can be attributed

to its specialized architecture tailored for high efficiency at smaller batch sizes. This

is in contrast to GPUs, which necessitate larger batch sizes to fully leverage their

parallel processing capabilities.

The graph titled Figure 5.6 displays the comparative speed increases achieved

when training the model with different batch sizes (1, 2, 4, 8, 16) using an IPU

compared to using a CPU or GPU.

The “IPU/CPU” bar shows the relative performance improvement of the IPU

compared to the CPU, which is about 30 times faster. This considerable boost in

speed shows that the IPU is much more efficient at handling the training process

than the traditional CPU, which is not built for the parallel processing that machine

learning algorithms take advantage of. On the other hand, the bar that represents

the results for the “IPU/GPU” comparison shows a smaller, but still significant,

Chapter 5: Experiments and Results 69

IPU/CPU IPU/GPU_V100 IPU/GPU_A1000

5

10

15

20

25

30

35

Sp
ee

d
up

Batch size=1
Batch size=2
Batch size=4
Batch size=8
Batch size=16

Figure 5.6: Speed up of IPU relative to the CPU and GPU for varying batch sizes
(1, 2, 4, 8, 16).

speedup. This indicates that the IPU is faster than the GPU, but the margin of

difference is not as great as the margin between the IPU and CPU. Additionally,

it’s noteworthy that for the smallest batch size of 1, we observe the most significant

speedup, approximately a 15-fold increase, which diminishes and plateaus after batch

size 4 to around a 5-fold speedup. This suggests that the IPU’s efficiency compared

to the CPU diminishes with larger batch sizes, while still maintaining a substantial

advantage over both CPU and GPU across all batch sizes.

These results imply that for machine learning tasks where the batch size is lim-

ited to smaller numbers, IPUs give a considerable performance boost compared to

both CPUs and GPUs. The specific architecture of the IPU, which is designed to

efficiently process machine learning algorithms, allows it to excel in training speeds

at smaller batch sizes. This observation is corroborated by the results presented in

[Mohan et al., 2020], where they also demonstrated that IPUs outperform GPUs in

scenarios involving smaller batch sizes. However, it is also implied that if the batch

size were increased, the GPU might see a relative increase in efficiency due to its

parallel processing capabilities, potentially closing the gap in speedup relative to the

IPU.

Chapter 5: Experiments and Results 70

IPU GPU_V1000.0

0.5

1.0

1.5

Pr
oc

es
se

d
In

pu
t p

er
 W

at
t

Figure 5.7: Number of processed inputs per Watt for IPU and GPU V100 for batch
size=4.

Figure 5.7 presents a comparative analysis of the throughput-to-power ratio be-

tween the IPU and the V100 GPU. The results demonstrate a noteworthy disparity

in efficiency, with the IPU exhibiting over a 60% improvement in throughput effi-

ciency compared to the V100 GPU. This indicates that, per unit of energy consumed,

the IPU is capable of processing a significantly greater volume of input data. This

finding underscores the superior energy utilization and processing efficacy of the IPU

architecture.

Chapter 6: Conclusion and Future Work 71

Chapter 6

CONCLUSION AND FUTURE WORK

This thesis examined the performance assessment of a multiple object tracking

model, with a specific focus on comparing the efficiency of Graphcore’s IPUs versus

traditional GPUs for training a GNN for this application. Through the process

of migrating an existing PyTorch implementation to TensorFlow and optimizing it

for IPU execution, this study conducted a comprehensive analysis, offering detailed

insights into the training and inference performance disparities between these two

computing architectures.

The key performance evaluation metrics encompassed the average training time

per epoch and average inference time per epoch, utilizing a consistent dataset across

all experiments. The findings align with existing literature [Nasari et al., 2022,

Mohan et al., 2020, Arcelin,], highlighting IPUs’ superior performance over GPUs

in scenarios with smaller batch sizes. This advantage is mainly because IPUs can

use computing resources efficiently in such situations, while GPUs face limitations

in fully harnessing their parallel processing capabilities with smaller batch sizes.

A crucial insight from this research is the impact of device-optimized functions

on performance. Specifically, Graphcore’s optimized scatter and gather functions

showcased a significant acceleration, achieving approximately a fourfold increase

in speed when juxtaposed with the default implementations within TensorFlow.

Furthermore, IPU-specific settings like I/O tiles and prefetch depth were found to

considerably impact performance.

A major challenge was the limited memory capacity of IPUs compared to GPUs.

While Graphcore’s IPU is designed with the intent for users to deploy multiple

units in tandem for large-scale applications, my research focused specifically on

investigating the capabilities of a single IPU. This architectural choice constrained

my experiments to smaller input graph sizes, since my research was specifically

Chapter 6: Conclusion and Future Work 72

aimed at exploring the capabilities of a single IPU. Although attempts were made

to implement data and model parallelization, the anticipated performance gains

were not fully realized within the allocated time frame and project scope. This

leaves room for exploration in multi-IPU training in future research.

Moving forward, the research plan involves increasing the scale of the model

to a multi-IPU framework to accommodate larger datasets and further improve

accuracy. This growth will also provide a chance to evaluate the IPU’s capability in

parallelization across multiple devices. Furthermore, to enhance performance, the

impacts of mixed-precision training should be explored.

This research has significantly deepened my knowledge in several key domains:

GNNs, MPNs, Graphcore IPUs, and the nuanced process of model development

and optimization. Through this experience, my ability to carry out performance

comparisons in high performance computing, as well as my general research skills in

machine learning, have been greatly improved.

Moreover, the project highlighted the crucial function of performance profiling.

By utilizing profiling techniques, I could pinpoint and correct inefficiencies in the

model early on, resulting in enhancements through the integration of IPU-optimized

operations.

In summary, this thesis represents a step forward in understanding the dynamics

of GNN training on an IPU. Through a comparison between Graphcore IPUs and

traditional GPUs, it has highlighted the subtle advantages of IPUs in scenarios

demanding efficiency with smaller batch sizes. The challenges encountered and

navigated underscore the pivotal significance of hardware optimization in advancing

machine learning applications.

Bibliography 73

BIBLIOGRAPHY

[ex3, 2024] (2024). ex3. https://www.ex3.simula.no/. Accessed: January 16,

2024.

[Arcelin,] Arcelin, B. Comparison of graphcore ipus and nvidia gpus for cosmology

applications (2021). DOI: https://doi. org/10.48550/ARXIV, 2106.

[Battaglia et al., 2018] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-

Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro,

A., Faulkner, R., et al. (2018). Relational inductive biases, deep learning, and

graph networks. arXiv preprint arXiv:1806.01261.

[Bewley et al., 2016] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016).

Simple online and realtime tracking. In 2016 IEEE international conference on

image processing (ICIP), pages 3464–3468. IEEE.

[Bilbrey et al., 2022] Bilbrey, J. A., Herman, K. M., Sprueill, H., Xantheas, S. S.,

Das, P., Roldan, M. L., Kraus, M., Helal, H., and Choudhury, S. (2022). Re-

ducing down (stream) time: Pretraining molecular gnns using heterogeneous ai

accelerators. arXiv preprint arXiv:2211.04598.

[Brasó et al., 2022] Brasó, G., Cetintas, O., and Leal-Taixé, L. (2022). Multi-object

tracking and segmentation via neural message passing. International Journal of

Computer Vision, 130(12):3035–3053.

[Brasó and Leal-Taixé, 2020] Brasó, G. and Leal-Taixé, L. (2020). Learning a neural

solver for multiple object tracking. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 6247–6257.

Bibliography 74

[Brasó and Leal-Taixé, 2020] Brasó, G. and Leal-Taixé, L. (2020). Learning a neural

solver for multiple object tracking github. https://github.com/dvl-tum/mot_

neural_solver.

[Chandrajit et al., 2016] Chandrajit, M., Girisha, R., and Vasudev, T. (2016). Mul-

tiple objects tracking in surveillance video using color and hu moments. Signal &

Image Processing: An International Journal, 7(3):15–27.

[Chen et al., 2022] Chen, C., Wu, Y., Dai, Q., Zhou, H.-Y., Xu, M., Yang, S., Han,

X., and Yu, Y. (2022). A survey on graph neural networks and graph transformers

in computer vision: a task-oriented perspective. arXiv preprint arXiv:2209.13232.

[Cobos et al., 2019] Cobos, R., Hernandez, J., and Abad, A. G. (2019). A fast

multi-object tracking system using an object detector ensemble. In 2019 IEEE

Colombian Conference on Applications in Computational Intelligence (ColCACI),

pages 1–5. IEEE.

[Cui et al., 2023] Cui, Y., Zeng, C., Zhao, X., Yang, Y., Wu, G., and Wang, L.

(2023). Sportsmot: A large multi-object tracking dataset in multiple sports scenes.

arXiv preprint arXiv:2304.05170.

[Dwivedi et al., 2023] Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,

Y., and Bresson, X. (2023). Benchmarking graph neural networks. Journal of

Machine Learning Research, 24(43):1–48.

[Elhoseny, 2020] Elhoseny, M. (2020). Multi-object detection and tracking (modt)

machine learning model for real-time video surveillance systems. Circuits, Sys-

tems, and Signal Processing, 39:611–630.

[Fan et al., 2019] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D.

(2019). Graph neural networks for social recommendation. In The world wide web

conference, pages 417–426.

Bibliography 75

[Feng and Meunier, 2022] Feng, M. and Meunier, J. (2022). Skeleton graph-neural-

network-based human action recognition: A survey. Sensors, 22(6):2091.

[Freund and Moorhead, 2020] Freund, K. and Moorhead, P. (2020). The graphcore

second-generation ipu.

[Gao and Hao, 2021] Gao, J. and Hao, L. (2021). Graph neural network and its

applications. In Journal of Physics: Conference Series, volume 1994, page 012004.

IOP Publishing.

[Gao et al., 2019] Gao, J., Zhang, T., and Xu, C. (2019). Graph convolutional

tracking. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 4649–4659.

[Gilmer et al., 2017] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and

Dahl, G. E. (2017). Neural message passing for quantum chemistry. In Interna-

tional conference on machine learning, pages 1263–1272. PMLR.

[Graphcore, 2022] Graphcore (2022). Custom grouped gather scatter. https://

github.com/graphcore/ogb-lsc-pcqm4mv2/tree/main/static_ops.

[Graphcore, 2020] Graphcore, I. (2020). Introducing the colossus™ mk2 gc200 ipu.

[Guo et al., 2022] Guo, S., Wang, S., Yang, Z., Wang, L., Zhang, H., Guo, P., Gao,

Y., and Guo, J. (2022). A review of deep learning-based visual multi-object

tracking algorithms for autonomous driving. Applied Sciences, 12(21):10741.

[Helal et al., 2022] Helal, H., Firoz, J., Bilbrey, J., Krell, M. M., Murray, T., Li,

A., Xantheas, S., and Choudhury, S. (2022). Extreme acceleration of graph

neural network-based prediction models for quantum chemistry. arXiv preprint

arXiv:2211.13853.

[Hosseini et al., 2022] Hosseini, R., Simini, F., and Vishwanath, V. (2022).

Operation-level performance benchmarking of graph neural networks for scien-

tific applications. arXiv preprint arXiv:2207.09955.

Bibliography 76

[Islam et al., 2020] Islam, M. M., Islam, M. R., and Islam, M. S. (2020). An effi-

cient human computer interaction through hand gesture using deep convolutional

neural network. SN Computer Science, 1:1–9.

[Jia et al., 2019] Jia, Z., Tillman, B., Maggioni, M., and Scarpazza, D. P. (2019).

Dissecting the graphcore ipu architecture via microbenchmarking. arXiv preprint

arXiv:1912.03413.

[Kamkar et al., 2020] Kamkar, S., Ghezloo, F., Moghaddam, H. A., Borji, A., and

Lashgari, R. (2020). Multiple-target tracking in human and machine vision. PLoS

computational biology, 16(4):e1007698.

[Kieritz et al., 2018] Kieritz, H., Hubner, W., and Arens, M. (2018). Joint detec-

tion and online multi-object tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pages 1459–1467.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-

sification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

[Kumaran and Reddy, 2017] Kumaran, N. and Reddy, U. S. (2017). Object detec-

tion and tracking in crowd environment—a review. In 2017 International Con-

ference on Inventive Computing and Informatics (ICICI), pages 777–782. IEEE.

[Li et al., 2020] Li, J., Gao, X., and Jiang, T. (2020). Graph networks for multiple

object tracking. In Proceedings of the IEEE/CVF winter conference on applica-

tions of computer vision, pages 719–728.

[Li et al., 2021] Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., and Tian, Q.

(2021). Symbiotic graph neural networks for 3d skeleton-based human action

recognition and motion prediction. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 44(6):3316–3333.

[Li et al., 2018] Li, P., Wang, D., Wang, L., and Lu, H. (2018). Deep visual tracking:

Review and experimental comparison. Pattern Recognition, 76:323–338.

Bibliography 77

[Liu et al., 2019] Liu, P., Li, X., Liu, H., and Fu, Z. (2019). Online learned siamese

network with auto-encoding constraints for robust multi-object tracking. Elec-

tronics, 8(6):595.

[Louw and McIntosh-Smith, 2021] Louw, T. and McIntosh-Smith, S. (2021). Using

the graphcore ipu for traditional hpc applications. In 3rd Workshop on Accelerated

Machine Learning (AccML).

[Luo et al., 2021] Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., and Kim, T.-

K. (2021). Multiple object tracking: A literature review. Artificial intelligence,

293:103448.

[Ma et al., 2019] Ma, C., Li, Y., Yang, F., Zhang, Z., Zhuang, Y., Jia, H., and

Xie, X. (2019). Deep association: End-to-end graph-based learning for multiple

object tracking with conv-graph neural network. In Proceedings of the 2019 on

International Conference on Multimedia Retrieval, pages 253–261.

[Ma et al., 2021] Ma, C., Yang, F., Li, Y., Jia, H., Xie, X., and Gao, W. (2021).

Deep human-interaction and association by graph-based learning for multiple ob-

ject tracking in the wild. International Journal of Computer Vision, 129:1993–

2010.

[Meinhardt et al., 2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., and Feichten-

hofer, C. (2022). Trackformer: Multi-object tracking with transformers. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 8844–8854.

[Moe et al., 2022] Moe, J., Pogorelov, K., Schroeder, D. T., and Langguth, J.

(2022). Implementating spatio-temporal graph convolutional networks on graph-

core ipus. In 2022 IEEE International Parallel and Distributed Processing Sym-

posium Workshops (IPDPSW), pages 45–54. IEEE.

[Mohan et al., 2020] Mohan, L. R. M., Marshall, A., Maddrell-Mander, S.,

O’Hanlon, D., Petridis, K., Rademacker, J., Rege, V., and Titterton, A. (2020).

Bibliography 78

Studying the potential of graphcore ipus for applications in particle physics. arXiv

preprint arXiv:2008.09210.

[Nasari et al., 2022] Nasari, A., Le, H., Lawrence, R., He, Z., Yang, X., Krell, M.,

Tsyplikhin, A., Tatineni, M., Cockerill, T., Perez, L., et al. (2022). Benchmark-

ing the performance of accelerators on national cyberinfrastructure resources for

artificial intelligence/machine learning workloads. In Practice and Experience in

Advanced Research Computing, pages 1–9.

[Papakis et al., 2020] Papakis, I., Sarkar, A., and Karpatne, A. (2020). Gcnnmatch:

Graph convolutional neural networks for multi-object tracking via sinkhorn nor-

malization. arXiv preprint arXiv:2010.00067.

[Park et al., 2021] Park, Y., Dang, L. M., Lee, S., Han, D., and Moon, H. (2021).

Multiple object tracking in deep learning approaches: A survey. Electronics,

10(19):2406.

[Poiesi et al., 2013] Poiesi, F., Mazzon, R., and Cavallaro, A. (2013). Multi-target

tracking on confidence maps: An application to people tracking. Computer Vision

and Image Understanding, 117(10):1257–1272.

[Pradhyumna et al., 2021] Pradhyumna, P., Shreya, G., et al. (2021). Graph neural

network (gnn) in image and video understanding using deep learning for computer

vision applications. In 2021 Second International Conference on Electronics and

Sustainable Communication Systems (ICESC), pages 1183–1189. IEEE.

[Rangesh et al., 2021] Rangesh, A., Maheshwari, P., Gebre, M., Mhatre, S.,

Ramezani, V., and Trivedi, M. M. (2021). Trackmpnn: A message passing graph

neural architecture for multi-object tracking. arXiv preprint arXiv:2101.04206.

[Rangesh and Trivedi, 2019] Rangesh, A. and Trivedi, M. M. (2019). No blind spots:

Full-surround multi-object tracking for autonomous vehicles using cameras and

lidars. IEEE Transactions on Intelligent Vehicles, 4(4):588–599.

Bibliography 79

[Rusch et al., 2023] Rusch, T. K., Bronstein, M. M., and Mishra, S. (2023). A survey

on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993.

[Scarselli et al., 2008] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and

Monfardini, G. (2008). The graph neural network model. IEEE transactions on

neural networks, 20(1):61–80.

[Sharma and Jalal, 2021] Sharma, H. and Jalal, A. S. (2021). Visual question an-

swering model based on graph neural network and contextual attention. Image

and Vision Computing, 110:104165.

[Shekofteh et al., 2023] Shekofteh, S.-K., Alles, C., and Fröning, H. (2023). Reduc-

ing memory requirements for the ipu using butterfly factorizations. In Proceedings

of the SC’23 Workshops of The International Conference on High Performance

Computing, Network, Storage, and Analysis, pages 1255–1263.

[Shen et al., 2018] Shen, Y., Li, H., Yi, S., Chen, D., and Wang, X. (2018). Person

re-identification with deep similarity-guided graph neural network. In Proceedings

of the European conference on computer vision (ECCV), pages 486–504.

[Shi and Rajkumar, 2020] Shi, W. and Rajkumar, R. (2020). Point-gnn: Graph

neural network for 3d object detection in a point cloud. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 1711–

1719.

[Shuai et al., 2021] Shuai, B., Berneshawi, A., Li, X., Modolo, D., and Tighe, J.

(2021). Siammot: Siamese multi-object tracking. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 12372–12382.

[Shuai et al., 2020] Shuai, B., Berneshawi, A. G., Modolo, D., and Tighe, J. (2020).

Multi-object tracking with siamese track-rcnn. arXiv preprint arXiv:2004.07786.

[Smeulders et al., 2013] Smeulders, A. W., Chu, D. M., Cucchiara, R., Calderara,

Bibliography 80

S., Dehghan, A., and Shah, M. (2013). Visual tracking: An experimental survey.

IEEE transactions on pattern analysis and machine intelligence, 36(7):1442–1468.

[Sumeet et al., 2022] Sumeet, N., Rawat, K., and Nambiar, M. (2022). Performance

evaluation of graphcore ipu-m2000 accelerator for text detection application. In

Companion of the 2022 ACM/SPEC International Conference on Performance

Engineering, pages 145–152.

[Tang et al., 2022] Tang, S., Zhang, W., Mu, Z., Shen, K., Li, J., Li, J., and Wu,

L. (2022). Graph neural networks in computer vision. Graph Neural Networks:

Foundations, Frontiers, and Applications, pages 447–462.

[Topping et al., 2021] Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X.,

and Bronstein, M. M. (2021). Understanding over-squashing and bottlenecks on

graphs via curvature. arXiv preprint arXiv:2111.14522.

[Vaswani et al., 2022] Vaswani, K., Volos, S., Fournet, C., Diaz, A. N., Gordon,

K., Vembu, B., Webster, S., Chisnall, D., Kulkarni, S., Cunningham, G., et al.

(2022). Confidential machine learning within graphcore ipus. arXiv preprint

arXiv:2205.09005.

[Wang et al., 2021] Wang, Y., Kitani, K., and Weng, X. (2021). Joint object de-

tection and multi-object tracking with graph neural networks. In 2021 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 13708–13715.

IEEE.

[Wang et al., 2022] Wang, Y., Murnane, D., Choma, N., Farrell, S., Calafiura, P.,

et al. (2022). Benchmarking gpu and tpu performance with graph neural networks.

arXiv preprint arXiv:2210.12247.

[Wang et al., 2020a] Wang, Y., Weng, X., and Kitani, K. (2020a). Joint detec-

tion and multi-object tracking with graph neural networks. arXiv preprint

arXiv:2006.13164, 1(2).

Bibliography 81

[Wang et al., 2020b] Wang, Z., Zheng, L., Liu, Y., Li, Y., and Wang, S. (2020b).

Towards real-time multi-object tracking. In European Conference on Computer

Vision, pages 107–122. Springer.

[Weng et al., 2020] Weng, X., Wang, Y., Man, Y., and Kitani, K. M. (2020).

Gnn3dmot: Graph neural network for 3d multi-object tracking with 2d-3d multi-

feature learning. In Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 6499–6508.

[Wilson and Martinez, 2003] Wilson, D. R. and Martinez, T. R. (2003). The gen-

eral inefficiency of batch training for gradient descent learning. Neural networks,

16(10):1429–1451.

[Wojke et al., 2017] Wojke, N., Bewley, A., and Paulus, D. (2017). Simple online

and realtime tracking with a deep association metric. In 2017 IEEE international

conference on image processing (ICIP), pages 3645–3649. IEEE.

[Wu et al., 2023] Wu, W., Shi, X., He, L., and Jin, H. (2023). Turbomgnn: Improv-

ing concurrent gnn training tasks on gpu with fine-grained kernel fusion. IEEE

Transactions on Parallel and Distributed Systems.

[Wu et al., 2013] Wu, Y., Lim, J., and Yang, M.-H. (2013). Online object tracking:

A benchmark. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2411–2418.

[Wu et al., 2020] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y.

(2020). A comprehensive survey on graph neural networks. IEEE transactions on

neural networks and learning systems, 32(1):4–24.

[Xiang et al., 2015] Xiang, Y., Alahi, A., and Savarese, S. (2015). Learning to track:

Online multi-object tracking by decision making. In Proceedings of the IEEE

international conference on computer vision, pages 4705–4713.

Bibliography 82

[Xu et al., 2018] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826.

[Xu et al., 2020] Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixé, L., and

Alameda-Pineda, X. (2020). How to train your deep multi-object tracker. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition, pages 6787–6796.

[Xu et al., 2019] Xu, Y., Zhou, X., Chen, S., and Li, F. (2019). Deep learning for

multiple object tracking: a survey. IET Computer Vision, 13(4):355–368.

[Ying et al., 2018] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L.,

and Leskovec, J. (2018). Graph convolutional neural networks for web-scale rec-

ommender systems. In Proceedings of the 24th ACM SIGKDD international con-

ference on knowledge discovery & data mining, pages 974–983.

[Yu et al., 2022] Yu, E., Li, Z., and Han, S. (2022). Towards discriminative rep-

resentation: Multi-view trajectory contrastive learning for online multi-object

tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8834–8843.

[Zhang et al., 2022] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo,

P., Liu, W., and Wang, X. (2022). Bytetrack: Multi-object tracking by associating

every detection box. In European Conference on Computer Vision, pages 1–21.

Springer.

[Zhang et al., 2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2021).

Fairmot: On the fairness of detection and re-identification in multiple object

tracking. International Journal of Computer Vision, 129:3069–3087.

[Zhang et al., 2020] Zhang, Z., Leng, J., Ma, L., Miao, Y., Li, C., and Guo, M.

(2020). Architectural implication of graph neural networks. IEEE Computer

Architecture Letters, page 1–1.

Chapter 6: Conclusion and Future Work 83

[Zheng et al., 2021] Zheng, L., Tang, M., Chen, Y., Zhu, G., Wang, J., and Lu, H.

(2021). Improving multiple object tracking with single object tracking. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2453–2462.

[Zhou et al., 2022] Zhou, H., Zheng, D., Nisa, I., Ioannidis, V., Song, X., and

Karypis, G. (2022). Tgl: A general framework for temporal gnn training on

billion-scale graphs. arXiv preprint arXiv:2203.14883.

[Zhou et al., 2020a] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,

L., Li, C., and Sun, M. (2020a). Graph neural networks: A review of methods

and applications. AI open, 1:57–81.

[Zhou et al., 2020b] Zhou, X., Koltun, V., and Krähenbühl, P. (2020b). Tracking

objects as points. In European conference on computer vision, pages 474–490.

Springer.

[Zhou et al., 2019] Zhou, X., Wang, D., and Krähenbühl, P. (2019). Objects as

points. arXiv preprint arXiv:1904.07850.

