
Elastic Pipeline Load Balancing for Dynamic

DNNs

by

Muhammet Abdullah Soytürk

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

January 27, 2023

Elastic Pipeline Load Balancing for Dynamic DNNs

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Muhammet Abdullah Soytürk

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Didem Unat (Advisor)

Assoc. Prof. Tolga Ovatman

Assist. Prof. Gözde Gül Şahin

Date:

Dedicated to Hatice Soytürk and Şükrü Soytürk whose sacrifices made this possible.

iii

ABSTRACT

Elastic Pipeline Load Balancing for Dynamic DNNs

Muhammet Abdullah Soytürk

Master of Science in Computer Science and Engineering

January 27, 2023

Training of dynamic models is gaining traction in DNNs as it reduces computa-

tional and memory requirements of large-scale training. Gradual pruning, one of

the prominent approaches for dynamic training, prunes (or sparsifies) the parame-

ters of a model during training. However, one of the side effects of gradual pruning

is that sparsification introduces an imbalanced workload across accelerators, which

in turn affects the pipeline parallelism efficiency. This work introduces DynPipe

which dynamically load balances the stages of the pipeline to offset the negative

performance effects of pruning. On top of load balancing dynamic models, Dyn-

Pipe can dynamically pack work into fewer GPUs, while sustaining performance.

DynPipe works on single nodes with multi-GPUs and also on systems with multi-

nodes. Experimental results show that DynPipe can speed up the training up to

5.64% in a single node, and 8.43% in a multi-node setting, over state-of-the art so-

lutions used in training production large language models. DynPipe is available at

https://anonymous.4open.science/r/DynPipe-1EC5

iv

ÖZETÇE

Yüksek Lisans Tez Başlığı

Muhammet Abdullah Soytürk

Bilgisayar Bilimleri ve Mühendisligi, Yüksek Lisans

January 27, 2023

Dinamik modellerin eğitimi, büyük ölçekli eğitimin hesaplama ve bellek gereksinim-

lerini azalttığı için DNN’lerde ilgi görüyor. Dinamik eğitim için öne çıkan yaklaşımlardan

biri olan kademeli budama, eğitim sırasında bir modelin parametrelerini budar (veya

seyreltir). Bununla birlikte, kademeli budamanın yan etkilerinden biri, seyrekleştirmenin

hızlandırıcılar arasında dengesiz bir iş yükü getirmesi ve bunun da boru hattı par-

alellik verimliliğini etkilemesidir. Bu çalışma, budamanın olumsuz performans etk-

ilerini gidermek için boru hattındaki yükleri dinamik olarak dengeleyen DynPipe’ı

tanıtmaktadır. DynPipe, dinamik modellerde yük dengelemeye ek olarak, toplam

yükü performansı düşürmeden daha az sayıda GPU’ya sığdırabilir. DynPipe, çok

GPU’lu tek düğümlerde ve çok düğümlü sistemlerde çalışır. Deneysel sonuçlar, Dyn-

Pipe’ın büyük dil modeli eğitiminde kullanılan son teknoloji çözümlere göre tek bir

düğümde eğitimi %5,64’e ve çok düğümlü bir ortamda %8,43’e kadar hızlandırabildiğini

göstermektedir. DynPipe aşağıdaki adreste mevcuttur:

https://anonymous.4open.science/r/DynPipe-1EC5

v

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Asst. Prof. Didem Unat for

her guidance in every step of the way. I thank Mohamed Wahib for his constant

guidance throughout this research. Our discussions with the members of ParCoreLab

Ismayil Ismayilov, Mandana Bagheri Marzijarani, Javid Baydamirli, Muhammad

Aditya Sasongko, Ilyas Turimbetov, Erhan Tezcan, Dog̈an Sag̈bili, Aydın Özcan,

and Endi Merkuri have always been a source inspiration.

I would like to thank Beyzanur Köseog̈lu, Furkan Serper, İrem Sultan Dilbaz,

Hande Nur Şahin, Burak Duman, and Sevde Zülal Uysal who made Istanbul a home

for me during my time here. I also thank Aladdin Demirkan, Merve Demirci, and

Beyza Ünal for their support and encouragement.

I am grateful to the RIKEN Center for Computational Science, Simula, National

Institute of Advanced Industrial Science and Technology, European Research Coun-

cil, and Koc University for providing the resources and support necessary for this

research. I would like to thank the researchers at RIKEN CCS High Performance

Artificial Intelligence Systems Research Team for their assistance and for providing

access to the necessary materials and equipment.

Finally, I feel privileged to have my family’s support for my decisions. The

sacrifices they made allowed me to come to this point in my life and I can never

thank them enough for that.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Abbreviations xii

Chapter 1: Introduction 1

Chapter 2: Background 6

2.0.1 Neural Network Pruning . 6

2.0.2 Load Imbalance in Dynamic Models 8

Chapter 3: Design 11

3.0.1 Overview . 11

3.0.2 Gradual Global Magnitude Pruning 12

3.0.3 Load Balancing . 14

3.0.4 Packing . 15

3.0.5 Implementation . 16

Chapter 4: Evaluation 20

4.0.1 End-to-end Training . 21

4.0.2 Overhead of Load Balancing 23

4.0.3 Vertical Scaling . 24

4.0.4 Packing . 24

4.0.5 Multi-node Weak Scaling . 25

4.0.6 Dynamic Minibatch/Microbatch Size 26

vii

Chapter 5: Related Work 29

5.0.1 Load Balancing Model-Parallel Deep Neural Networks 29

5.0.2 Packing . 30

5.0.3 Dynamic Pruning . 31

Chapter 6: Conclusion 32

Bibliography 33

viii

LIST OF TABLES

1.1 Training cost estimation of several LLMs and the cost saving for %1

speedup. Note that O(10s) training runs are typically required to test

and tune the hyperparamters of a production model. 4

4.1 Time for load balancing (load balancing overhead) in terms of number

of training iterations. Lower is better. Note: models train to 10,000s

of iterations. 23

4.2 Vertical scaling experiments show the throughputs (samples/sec) of

baseline Megatron-LM, and time-based algorithms, namely Diffusion

by Time and Partition by Time where the target sparsity is 90%. The

speed is calculated for the best-performing balancer in each case. The

benefits of dynamic load balancing increase as the number of GPUs

in the pipeline increases. 28

4.3 Experiment settings for weak scaling 28

ix

LIST OF FIGURES

1.1 Idleness percentage of GPUs for a single iteration of BERT mod-

els [Devlin et al., 2018] with 24, 32, 40 and 48 layers running on 8

NVIDIA A100 GPUs. Idleness, due to load imbalance, increases the

more we prune (sparsify) the model. 2

2.1 Bubble types in a pipeline with 4 microbatches. Inherent bubbles in

the pipeline are shown in gray and bubbles introduced by dynamicity

(e.g. sparsity) are shown in light blue. 7

3.1 Overview of DynPipe. The flow in the figure (top to bottom) is

repeated until the target sparsity is reached or training is completed.

Each rectangle represents a transformer layer (i.e. encoder or decoder

layer). The size of a rectangle illustrates the amount of work that the

transformer layer has. (1) shows the pipeline before pruning and

trains the model for n iterations (2) performs global gradual pruning,

(3) profiles the pipeline to check if there is any imbalance between

stages, (4) performs load balancing based on the profiling results,

(5) trains the balanced pipeline until the next pruning, optionally it

reduces the number of resources (GPUs) used in training by packing. 11

3.2 Sparse (Sputnik [Gale et al., 2020] and cuSPARSE) vs Dense (cuBLAS)

matrix multiplication performance comparison for M=N=K=4096 on

Nvidia A100. Starting at 75% sparsity level, sparse kernels using

Sputnik have performance advantages over dense kernels. 17

x

4.1 End-to-end training throughput (samples/sec) comparison for differ-

ent balancer types where the target sparsity is 90% in a gradual

pruning setting. Time-based dynamic load balancers outperform the

baseline static load balancers and dynamic parameter-based load bal-

ancers in all model sizes. Higher is better. 21

4.2 Idleness percentage of GPUs for a single iteration after each sparsity

level (52%, 79%, and 90%). The target sparsity is 90%. Time-based

dynamic load balancers lead to fewer pipeline bubbles. Lower is better. 22

4.3 Packing the workload into fewer GPUs as the model gets smaller due

to gradual pruning. The target sparsity is 90%. Left y-axis: through-

put/#GPUs. Right y-axis: throughput (tokens/second). Higher is

better. 25

4.4 Weak scaling throughput (tokens/sec) comparison of baseline static

load balancing with MegatronLM and dynamic load balancing with

Partition by Time algorithm of DynPipe. Left y-axis: through-

put. Right y-axis: speed up of Partition by Time over MegatronLM.

Higher is better. 26

xi

ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers

CPU Central Processing Unit

CSR Compressed Sparse Row

CUDA Compute Unified Device Architecture

DAG Directed Acyclic Graph

DNN Deep Neural Network

GPT Generative Pretraining

GPU Graphics Processing Unit

HPC High Performance Computing

LLM Large Language Model

MIG Multi Instance GPU

MPI Message Passing Interface

MoE Mixture of Experts

NCCL NVIDIA Collective Communications Library

PaLM Pathways Language Model

P2P Peer-to-Peer

SKU Stock Keeping Unit

SpMM Sparse Matrix-Matrix Multiplication

xii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Motivation: The size of neural networks used to train language models has been

growing exponentially since the perception of the first attention-based model [Vaswani

et al., 2017]. This growth in model sizes requires larger memory and more comput-

ing power. Yet, neither the memory capacity nor the compute capability of a single

accelerator increases at the same rate [Sevilla et al., 2022]. This makes it inevitable

to employ model parallel training schemes with multiple accelerators. Hence, state-

of-the-art HPC centers and cloud providers employ a combination of model and data

parallelism to train large models.

Model parallelism can be broadly grouped into three categories: intra-layer par-

allelism, channel/filter parallelism, and pipeline parallelism [Kahira et al., 2021].

In intra-layer parallelism, the operators of a layer are distributed across multiple

accelerators [Shoeybi et al., 2019, Narayanan et al., 2021, Smith et al., 2022]. In

channel/filter parallelism [Dryden et al., 2019b, Dryden et al., 2019a], the input

and/or output channels for all/some layers are distributed among accelerators. In

pipeline parallelism, the most commonly used form of parallelism in large model

training [Narayanan et al., 2021], consecutive layers of a model are packed into stages

where each stage is typically assigned to one accelerator, and the input mini-batch

is split into micro batches (chunks) to improve accelerator utilization by overlapping

the computation of different chunks in a pipeline fashion [Huang et al., 2019, Harlap

et al., 2018, Fan et al., 2021, Li and Hoefler, 2021].

In traditional language model training schemes, the workload for each stage is

known in advance and remains static throughout the training. To reduce compu-

tational and memory costs, a new line of training schemes that introduce dynamic

Chapter 1: Introduction 2

Figure 1.1: Idleness percentage of GPUs for a single iteration of BERT models
[Devlin et al., 2018] with 24, 32, 40 and 48 layers running on 8 NVIDIA A100
GPUs. Idleness, due to load imbalance, increases the more we prune (sparsify) the
model.

training workloads is rapidly emerging. This includes gradual pruning where the pa-

rameters of a model are pruned (i.e. sparsified) during training [Gale et al., 2019],

freeze training where some of the layers of a model are frozen [Raghu et al., 2017],

and gated neural networks at which the pathway through layers changes based on

the input [Shazeer et al., 2017]. Other than efficiency, there are other forms and

reasons for using dynamic models to improve the model attributes, such as explain-

ability and generalization. We refer the reader to the survey by Han et al. [Han

et al., 2021] on dynamic models.

One of the unforeseen side effects of these dynamic models is that they introduce

a load imbalance in pipeline parallelism, which effectively decreases the throughput

of training [Zhou et al., 2022, He et al., 2022]. For example, Figure 1.1 shows the

maximum idleness of GPUs for BERT language models with different numbers of

layers, where the models are sparsified from 20% to 90%. The load imbalance in-

Chapter 1: Introduction 3

creases as the model is pruned more, which reduces the pipeline utilization. Load

imbalance can manifest itself as bubbles that appear in the pipeline due to a stalling

accelerator that is waiting for work to pass on from its neighbor. At 90% sparsifica-

tion, the idleness ratio of a pipeline can be up to 48% (Figure 1.1). Since a pipeline

is as fast as its slowest stage, load balancing is crucially important for resource

utilization.

Limitation of state-of-art approaches: State-of-the-art production frame-

works implement a static load balance at the beginning of the training and preserve

the same load distribution throughout the training. Megatron-LM [Shoeybi et al.,

2019] evenly distributes all transformer layers to the accelerators. DeepSpeed [Smith,

2023] currently provides three partitioning methods to distribute the layers of a

model. Uniform balances the number of layers, param balances the number of pa-

rameters in each stage, and regex balances the layers whose name matches the given

regex. Since this approach is based on the assumption that loads of the accelerators

are approximately the same throughout the training, it fails to solve the pipeline

stalls introduced by dynamic models which decreases the computational efficiency.

Key insights and contributions: Considering the increase in dynamic train-

ing workloads, this work aims to reduce the pipeline stalls introduced by dynamic

training. Since the computational efficiency directly affects the cost and time to

train a model, we propose DynPipe, a pipeline dynamic load-balancing framework

for dynamic models, to balance the pipeline stages during training. DynPipe dynam-

ically load balances the stages of the pipeline whenever there is an imbalance in the

workload of accelerators during training, which in turn increases the computational

efficiency and results in cost savings. DynPipe includes the implementation for two

different dynamic balancers. Our experiments show that DynPipe can scale in both

single-node multi-GPU environments and also multi-node multi-GPU environments.

DynPipe improves the end-to-end training time of the BERT model by up to 5.64%

in single node and 8.43% in multi node over the state-of-the-art approaches on a

gradual pruning training scheme.

DynPipe does not just improve the performance by dynamic load balancing, it

also has the capability of adapting the GPU resources elastically. More specifically,

Chapter 1: Introduction 4

Table 1.1: Training cost estimation of several LLMs and the cost saving for %1
speedup. Note that O(10s) training runs are typically required to test and tune the
hyperparamters of a production model.

Model Cost Est. Savings w\ %1 Speedup

GPT-3 [Brown et al., 2020] $5M-$12M [Morgan, 2022, Li, 2022] $50k-$120k

PaLM [Chowdhery et al., 2022] $9M-$23M [Heim, 2022] $90k-$230k

Chincilla [Hoffmann et al., 2022] $2.5M-$3.1M [Morgan, 2022] $25k-$31k

as the aggregate amount of work drops during training due to the sparsification,

the load balancer re-packs the work to fewer GPUs (subject to memory capacity

constraints) while sustaining performance. The GPUs that are no more required in

training can then potentially be released back to the job scheduler (in environments

where the job schedulers can re-acquire released resources. For instance, in single-

node multi-GPP systems Nvidia Multi-Instance GPU (MIG) [Nvidia, 2023] support

partitioning the node to multi-tenant; released GPUs can be returned to MIG to be

allocated to other tenants. For multi-nodes, cloud schedulers are capable of acquiring

released resources and reassigning to other jobs by using elastic Kubernetes [Elastic,

2023], for instance.

To the best of our knowledge, this is the first work that studies the pipeline

stalls introduced by unstructured sparsity during dynamic training, and offers a

solution to the issue. Table 1.1 shows the training cost estimation for several LLM

models and the potential cost savings for every %1 speedup in the training time.

Considering the 10s of millions of dollars reported for every single run to train

LLMs (Large Language Models) [Li, 2022, Heim, 2022, Morgan, 2022], and the 10s of

training runs needed to develop and tune a model, even a single-digit improvement in

efficiency percentage is of significant importance. Moreover, elastically in reducing

the number of resources used in training without impacting the overall training

throughput provides additional savings. Finally, we emphasize that DynPipe sits as

a solution on top of the pipelining and pruning schemes. In other words, DynPipe

has no affect on the model accuracy, since it just redistributes the workload and

does not interfere with the mechanics of the learning process.

Chapter 1: Introduction 5

Finally, DynPipe is designed such that the load balancing method is orthogonal

to the sparsification approach. In other words, DynPipe can be used for dynamic

load balancing models that are being sparsified with a different criterion, structure,

schedule or even models that are dynamically changing due to a reason other than

sparsification (e.g. layer freezing [Wang et al., 2022], and manufacturing variability

of the computing units [Sinha et al., 2022]).

Our contributions are summarized below:

• We propose a dynamic load-balancing framework, DynPipe, to alleviate the

negative effects of dynamic models on pipeline utilization.

• We show the benefits of dynamic load balancing with a gradual training sce-

nario in both single node and multi node settings.

• We compare the effectiveness of different balancing mechanisms based on the

number of parameters and layer execution times.

Limitations of the proposed approach:

This work aims to alleviate the negative effects of the pipeline bubbles introduced

by the change in the workload during training, yet there are also pipeline bubbles

that are inherent because of the pipeline scheduling technique itself. DynPipe was

not designed to solve these inherent bubbles. We explain the difference between the

inherent bubbles in the pipeline and the extra bubbles introduced by the dynamic

model training in Section 2.0.2.

The components of DynPipe are configurable according to the needs of the dy-

namic workload but these configurations currently should be done by the user. We

leave the automation of the process of finding the best configuration, based on the

given dynamic model, to future work.

Chapter 2: Background 6

Chapter 2

BACKGROUND

With ever-growing Deep Neural Network (DNN) models, in terms of the number

of parameters, and datasets, parallel training has become necessity. This exponential

increase in in compute and memory requirements has made DNN training one of

the prominent workloads in high performance computing [Zhang et al., 2022].

In a typical DNN training schedule, the workload is known in advance and re-

mains relatively static throughout the training. For instance, there are many stud-

ies [Harlap et al., 2018, Fan et al., 2021, Li and Hoefler, 2021] that aim to improve

the pipeline design, and all of them assume a static workload throughout the train-

ing. However, new research directions for dynamic neural network training have

started to emerge for various reasons such as computational efficiency, generality,

and adaptiveness. Han et al. [Han et al., 2021] provides additional background on

why dynamic models might be preferred.

2.0.1 Neural Network Pruning

Pruning during training leads to dynamic models. Deep neural network models are

over-parameterized [Denil et al., 2013]. This means that there exists sub-networks

that can train to the same accuracy [Frankle and Carbin, 2018, Gale et al., 2019].

Network pruning is a sparsification procedure that removes a fraction of the param-

eters to achieve the same performance with a smaller network. There are three main

considerations that need to be taken into account when applying network pruning:

criterion, structure, and schedule of the pruning.

Pruning Criterion: Every pruning scheme needs to define a criterion to choose

which parameters to prune. A non-exhaustive list of pruning criteria used in the

literature includes: weight magnitude [Li et al., 2016, Renda et al., 2020], gradient

Chapter 2: Background 7

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 4 3 2 1

4 3 2 1

4 3 2 1

Forward Backward

GPU 0 4 3 2 1

GPU 1

GPU 2

GPU 3

Sync

1

1

1

2

1

Forward Backward

GPU 0

GPU 1

GPU 2

GPU 3

Time

(b) Pipeline parallel training with imbalanced stages

2 3

3

2 3

2 3

4

4

4

4

4

4

4

Extra bubbles induced
by dynamicity

Sync

(a) Pipeline parallel training with balanced stagesInherent bubbles of
pipeline schedule

4 3 2 1

3 2 1

3 2 1

3 2 1

Figure 2.1: Bubble types in a pipeline with 4 microbatches. Inherent bubbles in the
pipeline are shown in gray and bubbles introduced by dynamicity (e.g. sparsity) are
shown in light blue.

magnitude [Cun et al., 1990, Mozer and Smolensky, 1989], Bayesian statistics-based

criteria [Dai et al., 2018, Molchanov et al., 2017], and reinforcement learning based

criteria [Lin et al., 2017, He et al., 2018]. These criteria can be applied either locally

(i.e. considering each layer’s weights separately) or globally (i.e. considering weights

in all layers).

Pruning Structure: Parameters in a model can be removed in a structured

or unstructured way. Structured sparsity [Kruschke and Movellan, 1991] enforces a

pattern to be applied while choosing the parameters to be pruned. This can range

from removing filters in a convolution layer to removing attention heads in a multi-

headed attention layer. On the other hand, unstructured sparsity [Han et al., 2015]

is not under the constraint of a pattern (i.e can remove parameters freely), hence,

Chapter 2: Background 8

offers a finer granularity. Even though unstructured sparsity offers better flexibil-

ity, structured sparsity is more prevalent since it is difficult to implement efficient

kernels for sparse data structures in unstructured sparsity and deep learning soft-

ware packages have limited support for sparse computations. However, it has been

shown that the enforcement of a certain structure for the pruning of parameters can

result in significant degradation in model quality compare to unstructured sparsity

[Kalchbrenner et al., 2018, Elsen et al., 2020].

Pruning Schedule: After choosing the criterion and the structure of the prun-

ing, one must decide when to prune and how often to prune. The most popular

schedule in the literature consists of pruning after training is over, and then fine

tune the model to recover the loss introduced by the pruning [Han et al., 2015]. An-

other effective approach is to remove a certain percentage of weights progressively

during the training until the target sparsity is reached [Zhu and Gupta, 2017], which

eliminates the fine-tuning process. There are also schedules that enforce a constant

rate of sparsity throughout the training [Mocanu et al., 2018].

For a more comprehensive analysis of various sparsification procedures which are

applied in deep learning, we refer the reader to Hoefler et al. [Hoefler et al., 2021]

2.0.2 Load Imbalance in Dynamic Models

To reduce computational and memory costs, training schemes that introduce dy-

namic training workloads have started to emerge. One of the dynamic training

schemes is gradual pruning to reduce the model size. In a gradual pruning scheme,

the number of parameters used in training changes during training based on a prun-

ing strategy. If this pruning technique does not prune each layer uniformly (e.g.

global magnitude pruning [Hagiwara, 1993]), the workload of each stage may be sig-

nificantly different, which may introduce extra bubbles (stalls) in the pipeline [Zhu

and Gupta, 2017, Frankle and Carbin, 2018, Bellec et al., 2017].

Another emerging dynamic training scheme is freeze training which relies on the

idea that some layers of a network might converge faster than others, and hence can

be frozen and excluded from the model during training [Shen et al., 2020]. If the

Chapter 2: Background 9

frozen layers are not evenly distributed among accelerators, this can act as a source

of imbalance in the pipeline as reported by Shen et al. [Shen et al., 2020].

Networks at which the pathway through layers changes based on the input (e.g.

gated neural networks) are prone to load imbalance as well. For instance, in mixture-

of-experts models, most inputs might follow the same route which causes remaining

experts to be underutilized [Zhou et al., 2022].

Recent work [Sinha et al., 2022] shows that a source of imbalance can also be the

computing units themselves. For example, GPUs that have the same architecture

and SKU (stock keeping unit) exhibit performance variations of up to 20% due to

manufacturing variability and the chip’s power management. This dynamic training

workload might cause extra pipeline stalls due to performance differences between

identical computing units.

It is important to note that there are two types of bubbles in pipeline parallelism:

inherent bubbles of the pipeline schedule (e.g. bubbles at the beginning and at the

end of each training step in GPipe [Huang et al., 2019]), and bubbles introduced

by the dynamic models during training (e.g. bubbles introduced by pruning during

training). Figure 2.1 illustrates the difference between the inherent pipeline bubbles

in the pipeline schedule and the bubbles introduced by the dynamicity of the work-

load. We aim to reduce the latter type of bubbles by carefully redistributing the

layers among stages to minimize the workload imbalance in the pipeline.

Chapter 2: Background 10

Algorithm 1 End-to-end Training of Dynamic Models with DynPipe
Input: model, train iters, rank

Input: prune args, balance args, pack args

1: prune rat, prune region, prune freq ← prune args

2: prune idx ← 0

3: prune iter ← NULL

4: is load balance, balancer = balance args

5: is pack, num gpus to pack = pack args

6: profile ← 0

7: for iter ← 0 to train iters do

8: train step(model, profile)

9: if iter in prune region & iter % prune freq == 0 then

10: g prune(model, prune rat[prune idx], rank) ▷ Algo. 2

11: prune idx += 1

12: prune iter = iter

13: if is load balance then

14: profile = 1

15: end if

16: end if

17: if is load balance & iter == prune iter + 1 then

18: load balance(model, balancer) ▷ Algo. 3

19: profile ← 0

20: end if

21: if is pack & iter == prune iter + 1 then

22: pack workload(model, num gpus to pack) ▷ Algo. 4

23: end if

24: end for

Chapter 3: Design 11

L1 L2 L3 L4

L5 L6 L7 L8 L8 L7 L6 L5

L4 L3 L2 L1 Find Local Top K

Find Local Top K

Gather

local to
pk

Find Global Top K Scatter Compress
to CSR

indices to keep

Compress
to CSR

indices to keep

Global PruningPipeline

L1 L2 L3 L4

L5 L6 L7 L8 L8 L7

Profiling Imbalanced Pipeline

L6 L5

L4 L3 L2 L1
Gather Profiling

Results
Minimize Workload

Variance
ScatterAll Transfers

P2P Layer
Transfer

P2P Layer
Transfer

Local Transfers
Local Transfers

L1 L2 L3 L5

L6 L7 L8 L7

Balanced Pipeline

L6 L4

L5 L3 L2

L4 L8

L1

Load Balancing

L1 L2 L3 L5 L6 L7 L8 L7

Balanced Pipeline Packed Into Fewer GPUs

L6 L4 L5 L3 L2L4 L8 L1

NO

YES

GPU 0

GPU 1

GPU 0

GPU 1

GPU 0

GPU 1

1 2

3 4

5 5
IF PACK

Train for n iters

Figure 3.1: Overview of DynPipe. The flow in the figure (top to bottom) is re-
peated until the target sparsity is reached or training is completed. Each rectangle
represents a transformer layer (i.e. encoder or decoder layer). The size of a rect-
angle illustrates the amount of work that the transformer layer has. (1) shows the
pipeline before pruning and trains the model for n iterations (2) performs global
gradual pruning, (3) profiles the pipeline to check if there is any imbalance between
stages, (4) performs load balancing based on the profiling results, (5) trains the bal-
anced pipeline until the next pruning, optionally it reduces the number of resources
(GPUs) used in training by packing.

Chapter 3

DESIGN

3.0.1 Overview

In this work, we take pipeline parallelism with gradual pruning (sparsification during

training) as an example case of dynamic models, for which current execution systems

in DNN training are not ready to handle efficiently. Even though we show the

efficiency of our load balancing system for dynamic DNNs by employing a pipeline

parallel training scheme with gradual pruning, it can be a basis for expanding to

other forms of dynamic models, such as freeze training.

Algorithm 1 shows the overall flow of operations for dynamic load balancing with

Chapter 3: Design 12

DynPipe. The algorithm takes as input a model, the number of training iterations,

the rank of the accelerator, and several arguments for pruning, balancing, and pack-

ing the model’s workloads. We start the training with the original model and train

it until a user-specified pruning region (an iteration range e.g. 3000-7000) is reached

(line 7-8). The model is pruned only if the training is in this pruning region. Once

the training is in the pruning region, the model parameters are gradually pruned

every prune freq iteration (e.g. every 1000 iterations) where prune freq is the fre-

quency of pruning until the sparsity of the model reaches the given target sparsity

(line 9-16). The first iteration after each pruning operation is used for profiling the

time it takes to execute each layer in the pruned model and the memory usage of all

accelerators in the pipeline. Next, DynPipe collects the profiling information and

decides on balancing the workload by moving layers across pipeline stages based on

the execution times to minimize the pipeline stalls while respecting the memory ca-

pacity of the accelerators (line 17-20) and attempts to pack the total workload into

fewer number of GPUs if the packing is enabled (line 21-23). Once the training is

out of the pruning region, the pipeline continues to execute with the pruned model

and balanced pipeline.

Figure 3.1 also illustrates the overview of DynPipe with its steps. The imple-

mentation of individual steps of global pruning, load balancing, and packing can be

found in their related sections.

3.0.2 Gradual Global Magnitude Pruning

For our pruning design, we use the gradual pruning schedule proposed in [Zhu and

Gupta, 2017] which is formulated as:

st = sf + (si − sf)(1− t− t0
n∆t

)3 for t ∈ {t0, t0 + ∆t, ..., t + n∆t} (3.1)

where si, sf , n, t0, and ∆t are initial sparsity, final sparsity, number of pruning

steps, initial pruning step, and pruning frequency, respectively. The aim of this

schedule is to prune the model rapidly in the initial pruning steps since there are

Chapter 3: Design 13

many irrelevant connections, then reduce the pruning rate as the number of param-

eters in the network gets smaller.

Algorithm 2 Global Pruning Algorithm

Input: model, sparsity, rank

Output: model

1: params ← concat params(model)

2: k ← num params × (1 - sparsity)

3: local topk, local topk indices ← topk(abs(params), k)

4: topk values ← gather(local topk)

5: if rank == 0 then

6: global topk indices ← topk(abs(topk values), k)

7: end if

8: indices to keep ← scatter(global topk indices)

9: model = compress model(model, indices to keep)

10: return model

We employed an unstructured magnitude pruning technique as opposed to a

structured one since unstructured magnitude pruning typically retains better ac-

curacy under high sparsity rates [Prasanna et al., 2020]. Unstructured magnitude

pruning is applied globally (taking all parameters in the model into account) in-

stead of locally since it has been empirically shown that global pruning yields better

accuracy under high compression ratios [Blalock et al., 2020].

To our knowledge, there is no deep learning framework that supports global

pruning on a distributed model at the time of this writing. Thus we implemented

our own global pruning algorithm as shown in Algorithm 2. The global pruning

method takes three arguments, namely the model, target sparsity, and the rank of

the device. Note that each rank1 has only its own portion of the model. First, each

rank finds its own local top-k parameters in terms of magnitude (line 3). Then,

rank 0 gathers the top-k parameters of each rank (line 4). When rank 0 receives all

1We use one MPI rank per GPU.

Chapter 3: Design 14

top-k parameters, it calculates the indices of global top-k parameters to keep (line

6), and sends the indices that belong to each rank (line 8). Finally, after each rank

receives its indices to keep, they prune (discard) parameters with all other indices

in their local parameters (line 9).

3.0.3 Load Balancing

A well-balanced pipeline is crucial for high performance in parallel language model

training. Therefore, DynPipe collects the layer execution times after each pruning

step to assess whether moving layers between accelerators would be beneficial for

the pipeline. The first iteration after pruning is used for profiling the layer execution

times and memory usage. Although we prefer to perform load balancing after each

pruning step for this use case, the frequency of load balancing can be altered by the

end user depending on the requirements of the execution.

DynPipe implements two load balancing algorithms, and can be extended to

support other algorithms. The first one is the parameter-based partitioning method

that balances partitions based on the number of parameters. We also implemented

a version where the same algorithm is used for balancing partitions based on the

layer execution times instead of the number of parameters. This algorithm with

two variants is built on top of DeepSpeed’s load balancing utility functions for

partitioning in model parallelism [Smith, 2023]. The second algorithm is a diffusion-

based algorithm that aims to minimize the variance between the workload of each

rank by attempting to move layers from overloaded ranks to underloaded ranks in an

iterative way. The workload can either be the layer execution times or the parameter

counts as in the DeepSpeed-based algorithms. The number of iterations to decide

on the final load distribution is a user-defined parameter.

Algorithm 3 shows the pseudo-code for the diffusion-based load balancing algo-

rithm. After rank 0 gathers the loads (i.e. layer execution times or the number

of parameters for each layer) from all ranks, it discovers all layer transfers between

ranks by calling a diffusion re-balance function. The number of iterations to min-

imize the variance is an argument that can be tuned according to the workload.

Chapter 3: Design 15

For each iteration of balancing, the total load of each rank, variance, and average

load are calculated (lines 3-5). Then, each rank is assigned a status: overloaded or

underloaded (lines 6-7). After the status of each rank is assigned, each overloaded

rank attempts to send its least loaded layer to the least loaded rank (lines 7-24).

Every time an overloaded rank attempts to send a layer to an underloaded rank,

new loads and variance are calculated (lines 12-14). If the new variance is smaller

than the current variance and it satisfies the memory constraints of the destination

rank, the transfer is accepted and added to the transfers list in the format of (source,

destination, layer id) (lines 17-22). When rank 0 discovers all layer transfers from

source ranks to destination ranks, it distributes the information to other ranks and

the sparse format data structures, CSR, of the layers to be transferred are sent to

their new destinations.

3.0.4 Packing

Workload packing is the process of merging the total workload into a smaller num-

ber of GPUs with the purpose of using the available resources more efficiently, i.e.

unused resources can be released. This can be achieved with simple algorithms (in

small scale) such as first-fit, best-fit, and round-robin as well as complex optimiza-

tion problems (for large scale) such as ant colony optimization [Dorigo et al., 2006] or

genetic algorithms [Dasgupta et al., 2013]. Workload packing aims to increase GPU

utilization and reduce the overall number of GPUs employed to continue the training

process. For long training schedules that are common in LLM training, workload

packing can result in substantial cost savings. It may also provide improved perfor-

mance due to less number of cross-GPU communication calls and smaller pipeline

bubbles.

Algorithm 4 shows a simple first-fit algorithm that we used for workload con-

solidation. It simply iterates over all the available GPUs (lines 2-3) and checks if

the combined memory usage of the two GPUs is less than the maximum memory

capacity of a single GPU and the number of active GPUs is greater than the target

number of GPUs target num gpus for packing (lines 4-5). If that is the case, it will

Chapter 3: Design 16

transfer all layers of the source GPU to the destination GPU (lines 7-8). Then, it

updates the memory usage and the number of layers on the destination GPU ac-

cordingly. This process continues until all the available GPUs have been checked

and processed. The goal of this algorithm is to reduce the number of active GPUs

to the target num gpus, while also ensuring that the total memory usage remains

within device limits.

3.0.5 Implementation

The DynPipe load balancing system was developed on top of Megatron-LM v3.0

2. Each component of DynPipe, namely pruning, load balancing and packing is

implemented in a separate package for ease of use and extension.

Unstructured pruning requires a sparse storage format to compactly store, train,

and transfer the pruned model. One of the most commonly used sparse formats is the

compressed sparse row (CSR) format. Using a sparse matrix format requires dense

matrix multiplication (DMM) operations to be converted to sparse counterparts

(SpMM). Since PyTorch does not support the derivative of SpMM operation for

backpropagation on a CSR tensor, we evaluated CSR-based SpMM implementations

available for use on GPUs, namely cuSPARSE by Nvidia and Sputnik [Gale et al.,

2020]. Figure 3.2 shows the performance of cuSPARSE and Sputnik against the

dense counterpart (cuBLAS). SpMM kernel of Sputnik outperforms cuSPARSE in

all sparsity levels. This is mainly because Sputnik kernels were implemented by

specifically considering the deep learning workloads, unlike cuSPARSE kernels that

mainly target the HPC workloads, which often have more than 99% sparsity. It is

also worth noticing that Sputnik starts to outperform cuBLAS after 75% sparsity.

Thus, for sparse operations, we implemented PyTorch bindings for the CUDA kernels

of Sputnik 3.

The gather and scatter operations in global pruning were implemented by em-

2https://github.com/NVIDIA/Megatron-LM/releases/tag/v3.0.2

3The Sputnik bindings are made available at the following link: https://anonymous.4open.

science/r/Torch-Sputnik-E926/README.md.

Chapter 3: Design 17

Sparsity

Ti
m

e
(in

 m
s)

5

10

50

100

50% 60% 70% 80% 90%

Sputnik cuSPARSE cuBLAS

Figure 3.2: Sparse (Sputnik [Gale et al., 2020] and cuSPARSE) vs Dense (cuBLAS)
matrix multiplication performance comparison for M=N=K=4096 on Nvidia A100.
Starting at 75% sparsity level, sparse kernels using Sputnik have performance ad-
vantages over dense kernels.

ploying NCCL Peer-to-Peer (P2P) send-receive operations instead of collective com-

munication operations since the sizes of the objects to be sent (local topk) and

received (indices to keep) from each rank are different and other ranks do not have

this size information to participate in the collective call.

The necessary information for load balancers such as layer execution times and

memory usage comes from the profiling iteration after each pruning iteration. The

execution time profiling is implemented by extending the built-in timers of Mega-

tronLM. The memory consumption of each pipeline stage is gathered with PyTorch’s

memory statistics for CUDA.

Chapter 3: Design 18

Algorithm 3 Diffusion-based Load Balancing Algorithm

Input: loads, num ranks, max iters, times, mem info

Output: transfers (list)

1: transfers ← []

2: for iter ← 0 to max iters do

3: total loads ← [sum(t) for t in times]

4: avg load ← average(total loads)

5: var ← variance(total loads)

6: status ← [”Overload” if l > avg load

7: else ”Underload” for l ∈ loads]

8: for src ← 0 to num ranks do

9: if status[src] == ”Overload” then

10: dst ← get least loaded rank(loads)

11: lyr idx ← get least loaded layer(src, times)

12: new loads ← update loads(src,dst,lyr idx,loads)

13: new total loads ← [sum(l) for l ∈ new loads]

14: new var ← variance(new total loads)

15: mem req = sum(mem info[dst]) +

16: mem info[src][lyr idx]

17: if new var < var && mem req ¡ MAX MEM then

18: var ← new var

19: loads ← new loads

20: update mem info(src, dst, lyr idx, mem info)

21: transfers.append((src, dst, lyr idx))

22: end if

23: end if

24: end for

25: end for

26: return transfers

Chapter 3: Design 19

Algorithm 4 Pack Layers into Fewer GPUs
Input: active gpus, mem usage

Input: target num gpus, num layers

Output: transfers (list)

1: transfers ← []

2: for src in range(num ranks) do

3: for dst in range(src + 1, num ranks) do

4: if mem usage[src] + mem usage[dst] ¡ MAX MEM

5: && sum(active gpus) ¿ target num gpus then

6: active gpus[src] = 0

7: for lyr idx in range(num layers[src]) do

8: transfers.append((src, dst, lyr idx))

9: end for

10: mem usage[dst] += mem usage[src]

11: num layers[dst] += num layers[src]

12: end if

13: end for

14: end for

15: return transfers

Chapter 4: Evaluation 20

Chapter 4

EVALUATION

This section contains empirical results and an analysis of our dynamic load bal-

ancer. Experiments were mainly conducted on compute nodes each of which contains

an Intel Xeon Gold 6148 CPU, and eight 40GB NVIDIA A100 GPU. The GPUs in

the same node communicate through 12 NVLink3 and an NVSwitch. The com-

pute nodes are connected by 4 Infiniband HDR (200 Gbps). We used CUDA 11.3,

OpenMPI 4.0.5 and PyTorch 1.12 with NCCL 2.9.9 distributed backend.

The models used for experiments are trained on the Wikipedia dataset [Foun-

dation, 2023]. All models used for training have a sequence length of 512, a hidden

size of 1024, 16 attention heads, and the models are trained with a micro-batch size

of 2 and batch size of 64 for 10000 iterations unless specified otherwise.

We have experimented with two dynamic load balancing algorithms each of which

has two different configurations. The first algorithm is based on a DeepSpeed [Ra-

jbhandari et al., 2020] API which uses a combination of a binary search and a linear

probe to find the best partitioning given the parameter counts of the encoder/de-

coder layers. We call this algorithm Partition by Param throughout the evaluation.

Another variation of this balancer uses encoder/decoder layer execution times as in-

put instead of parameter counts. Hence, this variation is called Partition by Time.

The second algorithm is a global diffusion-based load balancing algorithm that aims

to minimize the variance between loads of the accelerators in an iterative way. This

balancer has two variations similar to DeepSpeed, namely Diffusion by Param and

Diffusion by Time.

Chapter 4: Evaluation 21

Number of Layers

Sa
m

pl
es

/S
ec

0

5

10

15

20

25

30

35

24 32 40 48

Static LB (Megatron-
LM)

Static LB
(DeepSpeed)

Dynamic LB
(Partition by Time)

Dynamic LB
(Partition by Param)

Dynamic LB
(Diffusion by Time)

Dynamic LB
(Diffusion by Param)

Figure 4.1: End-to-end training throughput (samples/sec) comparison for different
balancer types where the target sparsity is 90% in a gradual pruning setting. Time-
based dynamic load balancers outperform the baseline static load balancers and
dynamic parameter-based load balancers in all model sizes. Higher is better.

4.0.1 End-to-end Training

We trained BERT models [Devlin et al., 2018] having different numbers of layers

with eight A100 GPUs in a single node. The pruning region starts from iteration

3000 and continues until iteration 7000 and the model is pruned every 1000 iterations

until the 90% target sparsity is reached. This corresponds to a sparsity levels of 52%,

79%, and 90% after each pruning step which is achieved with pruning steps of 52%,

56%, and 46% in order. All other hyperparameters are the same as Megatron-LM.

In Figure 4.1 we report the throughput of two state-of-art static load balancers

and four dynamic load balancers. The static balancers are Megatron-LM [Shoeybi

et al., 2019] which distributes the layers evenly across accelerators and DeepSpeed [Mi-

crosoft, 2023] which distributes the layers by balancing the number of parameters

before the training starts. On the other hand, dynamic balancers, Partition by Time,

Partition by Param, Diffusion by Time, and Diffusion by Param are redistributing

the layers after each pruning step if it is necessary. While parameter-based balancers

require the profiling step after the pruning step just for memory usage information,

time-based balancers require it for both memory usage and the layer execution time

Chapter 4: Evaluation 22

Figure 4.2: Idleness percentage of GPUs for a single iteration after each sparsity
level (52%, 79%, and 90%). The target sparsity is 90%. Time-based dynamic load
balancers lead to fewer pipeline bubbles. Lower is better.

information.

As seen in the figure, using layer execution time for diffusion or partitioning

dynamic load balancing outperforms the parameter count-based implementations in

each scale. While execution time-based dynamic balancers outperform the baseline

static balancers in every scale, parameter-based dynamic balancers sometimes slow

down the training (e.g. Partition by Param in every scale). This can be attributed to

the fact that as the transformer layers are pruned, parameters in the embedding layer

of the first GPU and the post-processing layers of the last GPU start to dominate the

parameter counts. This leads the parameter count-based algorithms to aggressively

move the transformer layers of the first and last GPU to other GPUs (more than

necessary in most cases). In conclusion, time-based load-balancing algorithms result

in higher throughput in all cases.

Figure 4.2 shows the maximum idleness percentage of GPUs in the pipeline after

each sparsity level for the baseline model MegatronLM and time-based load bal-

Chapter 4: Evaluation 23

Table 4.1: Time for load balancing (load balancing overhead) in terms of number of
training iterations. Lower is better. Note: models train to 10,000s of iterations.

of Partition Partition Diffusion Diffusion

Layers by Time by Param by Time by Param

24 25 61 12 18

32 9 55 7 20

40 12 56 11 18

48 13 54 4 13

ancers Diffusion by Time and Partition by Time. Dynamic load balancers alleviates

the pipeline bubbles in all sparsity levels and in certain cases (e.g. 24 layers at 90%

sparsity), the benefit of dynamic load balancing may be up to %10 less pipeline

bubbles compared to the static load balancing of MegatronLM.

4.0.2 Overhead of Load Balancing

The time spent to load balance the model is negligible in deep neural networks since

they are typically trained for days if not months [Chowdhery et al., 2022, Hoffmann

et al., 2022]. Table 4.1 shows the time spent while load balancing for different

balancers in terms of the number of iterations. The maximum number of iterations

for the diffusion algorithm is set to 5 but the experiments showed that it usually

converges after two iterations. The reported load balancing times include both the

load balancing decision and the actual transfer of the parameters and index data

structures (i.e. row offsets and column indices in CSR format) of the layers to be

sent or received. Among all balancers, Diffusion by Time has the least overhead.

Considering the fact that the frequency of pruning is in the order of 1000s-10000s

to recover the accuracy after pruning [Gale et al., 2019, Zhu and Gupta, 2017], the

load balancing overhead is easily amortized. All our throughput and speedup results

include the load balancing overhead unless specified otherwise.

Chapter 4: Evaluation 24

4.0.3 Vertical Scaling

In single-node vertical scaling experiments, the number of layers in the model and

the number of GPUs used in the pipeline are changed. In Table 4.2, we report

throughputs of the static baseline balancer (Megatron-LM) and the best-performing

dynamic load balancers from end-to-end training experiments (Diffusion by Time

and Partition by Time). The dynamic load balancers speed up the training in various

degrees up to 5.64% for different numbers of GPUs.

One important observation is that as the number of GPUs used in the pipeline

increases, the speed-up gained by the usage of a dynamic balancer builds up. This

suggests that the importance of load balancing increases as the pipeline gets deeper

because the additional bubbles that are introduced by the dynamic nature of the

model affect the efficiency of the pipeline more. This is important when considering

the fact that the model size of large language models doubles approximately every

3.9 months [Zhang et al., 2022] which leads to deeper pipelines.

4.0.4 Packing

In the packing experiments, the training starts with 8 GPUs and after each pruning

step, DynPipe attempts to pack the total workload into fewer number of GPUs by

while satisfying the memory capacity constraints of the devices. Figure 4.3 reports

the throughput/number of GPUs for each model size where the model is packed

into 6, 4, and 2 GPUs. The 8 GPU setting for each model size serves as a baseline

where there is no packing. This measurement also corresponds to the performance

per dollar metric as the cost is directly proportional to the number of GPUs used

in training.

It can be observed that in all model scales (e.g. 24 or 32 layers), packing can

allow the training to be continued with fewer GPUs which may result in significant

cost savings. For example, in Figure 4.3, reducing the GPU count from 6 to 4 results

in almost the same throughput while the resource usage cost is reduced by %50 for

32 layer case. The benefits of packing are not limited to the cost savings. For

instance, packing the number of GPUs to 6 from 8 in 24 layer setting also increases

Chapter 4: Evaluation 25

Figure 4.3: Packing the workload into fewer GPUs as the model gets smaller due
to gradual pruning. The target sparsity is 90%. Left y-axis: throughput/#GPUs.
Right y-axis: throughput (tokens/second). Higher is better.

the throughput which results in faster training time. In other words, packing the

workload into fewer GPUs after pruning may lead to faster or comparable training

time with fewer resources.

4.0.5 Multi-node Weak Scaling

For multi-node weak scaling experiments, we trained the BERT models having dif-

ferent numbers of layers and batch sizes on up to 8 nodes each of which contains

a single A100 GPU (one GPU/node). The pruning region starts from iteration 30

and continues until iteration 70 and the model is pruned every 10 iterations until

the 90% target sparsity is reached. The pruning and load balancing overheads are

excluded from the measurements since the number of iterations to do this scaling

experiment is not sufficient enough to amortize the overheads; in actual training

(1000s to 10,000s iterations) the pruning and load balancing overheads would be

negligible (Table 4.1).

Chapter 4: Evaluation 26

Figure 4.4: Weak scaling throughput (tokens/sec) comparison of baseline static load
balancing with MegatronLM and dynamic load balancing with Partition by Time
algorithm of DynPipe. Left y-axis: throughput. Right y-axis: speed up of Partition
by Time over MegatronLM. Higher is better.

The settings that are used for multi-node experiments is listed in Table 4.3. As

we increase the number of GPUs and layers, we also increase the batch size to fix

the number of micro batches to four times the number of GPUs in the pipeline, as

suggested in [Huang et al., 2019] to achieve good pipeline utilization.

Figure 4.4 shows that the pipeline that is dynamically balanced with Partition by

Time algorithm of DynPipe reaches higher throughputs in all scales and it provides

speed up over baseline MegatronLM up to 8.43%.

4.0.6 Dynamic Minibatch/Microbatch Size

In cases where the total load of the pipeline decreases such as gradual sparsification

and freeze training, carefully changing the minibatch and microbatch size according

to the needs of the new pipeline after load balancing may increase the efficiency

of the training. For instance, GPipe [Huang et al., 2019] suggests the number of

micro batches to be greater than four times the number of GPUs in the pipeline

Chapter 4: Evaluation 27

for optimal overlapping. Since the packing decreases the number of GPUs in the

pipeline, adjusting the number of micro batches in the pipeline after packing could be

beneficial. In addition, minibatch size can be increased after the pruning operations

since the memory requirement for execution is less after the pruning. DynPipe

currently does not support this feature.

Chapter 4: Evaluation 28

Table 4.2: Vertical scaling experiments show the throughputs (samples/sec) of base-
line Megatron-LM, and time-based algorithms, namely Diffusion by Time and Par-
tition by Time where the target sparsity is 90%. The speed is calculated for the
best-performing balancer in each case. The benefits of dynamic load balancing in-
crease as the number of GPUs in the pipeline increases.

Megatron Diff Part Speed

Layers GPUs LM by Time by Time Up

24 2 11.58 11.75 11.75 1.50%

4 20.23 20.86 20.82 3.12%

8 32.25 33.94 34.07 5.64%

32 2 8.83 8.96 8.93 1.49%

4 15.69 16.06 16.13 2.81%

8 25.81 26.90 26.93 4.36%

40 2 7.14 7.24 7.25 1.53%

4 12.84 13.11 13.11 2.06%

8 21.43 22.26 22.30 4.06%

48 2 OOM OOM OOM OOM

4 10.89 11.09 11.08 1.77%

8 18.13 18.72 18.71 3.30%

Table 4.3: Experiment settings for weak scaling

GPUs # Layers # Microbatches

2 12 8

4 24 16

8 48 32

Chapter 5: Related Work 29

Chapter 5

RELATED WORK

5.0.1 Load Balancing Model-Parallel Deep Neural Networks

Layer-wise load balancing

Layer-wise balancing techniques work on layer granularity instead of operators.

DeepSpeed [Microsoft, 2023] offers three partitioning methods to balance the work-

load of stages: parameters, uniform, and regex. While the parameters method is

trying to balance the number of parameters in each stage, the uniform aims to dis-

tribute the layers evenly. Regex only distributes the layers that match the given

regex (e.g. transformer layers). Similar to the parameters method of DeepSpeed,

He et al. [He et al., 2021] balance the stages based on the number of parameters in

each stage. Narayanan et al. [Narayanan et al., 2021] assign each stage the same

number of transformer layers to balance the load. None of the aforementioned stud-

ies use the actual execution time of the layers to decide on the distribution of layers.

DynPipe supports DeepSpeed’s partitioning scheme with both parameters and layer

execution times to guide load balancing, as well as a diffusion-based load balancing

algorithm out of the box.

Load balancing via graph partitioning

Graph partitioning-based load balancing schemes find atomic operations in the

model and consider them as nodes in a directed acyclic graph (DAG). Edges in the

graph represent the dependencies between operations. Tanaka et al. [Tanaka et al.,

2021] partition the DAG in three phases at which they first find atomic operations,

then group these operations into blocks according to their computation times, and

finally, they combine blocks into final partitions by using a dynamic programming-

based algorithm. Qararyah et al. [Qararyah et al., 2021] create disjoint clusters from

Chapter 5: Related Work 30

the nodes of the graph by finding critical paths and mapping these clusters to devices

based on a mapping algorithm that takes both critical-communication minimization

and temporal load balancing into account. Both studies perform profiling before the

actual training and partition the graph once.

Load balancing in Mixture of Experts Models

The mixture of experts (MoE) [Jacobs et al., 1991] models contain many sub-

networks (experts) where a router allocates inputs to top-k experts. At scale, experts

are distributed across devices. [Lepikhin et al., 2020] defines an expert’s capacity to

limit the maximum number of tokens that can be processed by an expert to achieve

workload balance. [Fedus et al., 2021] routes each token to only one expert and uses

the same expert capacity restriction. Lewis et al. [Lewis et al., 2021] employ an

auction algorithm [Bertsekas, 1992] to solve the token-to-expert assignment prob-

lem. This line of work is different from ours in the sense that their aim is to balance

workload in the feed-forward network while our work aims to balance all layers of

the transformer model.

5.0.2 Packing

In dynamic neural network models, packing the total workload into fewer number

accelerators can provide significant cost-saving benefits. PipeTransformer [He et al.,

2021] offers an elastic pipelining system for freeze training where some of the layers

of the model are frozen during the training. PipeTransformer packs the remain-

ing active layers into fewer GPUs and creates pipeline replicas if possible. When

PipeTransformer receives a notification for layer freezing, it attempts to divide the

number of GPUs by 2 subject to the memory capacity constraints. On the other

hand, our work DynPipe can pack to an arbitrary number of GPUs specified by the

user. Another difference between the packing mechanism of DynPipe and PipeTrans-

former is that PipeTransformer uses the parameter size as a proxy to estimate the

memory usage while DynPipe uses the actual memory usage from the profiling step

before load balancing. Finally, PipeTransformer is only capable of packing layers to

Chapter 5: Related Work 31

fewer GPUs, and not load balancing. DynPipe, on top of being capable of packing

when deemed beneficial, it can also redistribute the workload to achieve a better

load balance.

5.0.3 Dynamic Pruning

Model pruning is a fast-paced research area. Since the optimization problem has

many dimensions, there are many approaches to prune a model. We mainly focus on

the schedule of the pruning rather than the decision of how to prune (e.g. magnitude

pruning, variational dropout etc.) and what kind of structure (e.g. unstructured

pruning, structured pruning) to be applied while pruning.

One of the commonly used sparsification technique is sparsification during train-

ing (i.e. gradual pruning) where the pruning starts before the model is trained until

convergence. While some studies [Wortsman et al., 2019, Lin et al., 2020] use a

binary mask to specify whether a parameter is pruned, which enables them to ap-

ply better weight regrowth or selection, others [Gale et al., 2020] delete the pruned

parameters to reduce the memory usage and number of operations. There are also

many works on how fast to prune. For instance, Zhu and Gupta [Zhu and Gupta,

2017] prune the model rapidly in the first pruning steps when there are many abun-

dant parameters in the model, and then reduce the pruning ratio as the number

of parameters in the model are getting less and less. Dai et al. [Dai et al., 2019]

employ a three phase schedule (birth-brain, baby-brain, and adult-brain) similar

to the human brain development. Mostafa et al. [Mostafa and Wang, 2019] uses

magnitude pruning as criterion to prune the parameters and regrows parameters to

comply with the training budget.

Chapter 6: Conclusion 32

Chapter 6

CONCLUSION

DynPipe offers a load-balancing system for dynamic models where the loads

of the accelerators change during training. DynPipe provides better load balance

among stages than state-of-the-art static load balancing approaches which results

in better efficiency and faster end-to-end training time. Empirical results for large

language models with a gradual pruning training show that DynPipe significantly

improves the training throughput over the counterparts. We foresee that dynamic

models will be more prominent in the future and dynamic load distribution will be

of utmost importance.

Bibliography 33

BIBLIOGRAPHY

[Bellec et al., 2017] Bellec, G., Kappel, D., Maass, W., and Legenstein, R.

(2017). Deep rewiring: Training very sparse deep networks. arXiv preprint

arXiv:1711.05136.

[Bertsekas, 1992] Bertsekas, D. P. (1992). Auction algorithms for network flow prob-

lems: A tutorial introduction. Computational Optimization and Applications,

1(1):7–66.

[Blalock et al., 2020] Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.

(2020). What is the state of neural network pruning? Proceedings of machine

learning and systems, 2:129–146.

[Brown et al., 2020] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020).

Language models are few-shot learners. Advances in neural information processing

systems, 33:1877–1901.

[Chowdhery et al., 2022] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,

G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., et al.

(2022). Palm: Scaling language modeling with pathways. arXiv preprint

arXiv:2204.02311.

[Cun et al., 1990] Cun, Y. L., Denker, J. S., and Solla, S. A. (1990). Optimal Brain

Damage, page 598–605. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

[Dai et al., 2018] Dai, B., Zhu, C., Guo, B., and Wipf, D. (2018). Compressing

neural networks using the variational information bottleneck. In International

Conference on Machine Learning, pages 1135–1144. PMLR.

Bibliography 34

[Dai et al., 2019] Dai, X., Yin, H., and Jha, N. K. (2019). Nest: A neural net-

work synthesis tool based on a grow-and-prune paradigm. IEEE Transactions on

Computers, 68(10):1487–1497.

[Dasgupta et al., 2013] Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., and

Dam, S. (2013). A genetic algorithm (ga) based load balancing strategy for

cloud computing. Procedia Technology, 10:340–347. First International Conference

on Computational Intelligence: Modeling Techniques and Applications (CIMTA)

2013.

[Denil et al., 2013] Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and De Freitas, N.

(2013). Predicting parameters in deep learning. Advances in neural information

processing systems, 26.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.

[Dorigo et al., 2006] Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony

optimization. IEEE Computational Intelligence Magazine, 1(4):28–39.

[Dryden et al., 2019a] Dryden, N., Maruyama, N., Benson, T., Moon, T., Snir, M.,

and Essen, B. V. (2019a). Improving strong-scaling of CNN training by exploiting

finer-grained parallelism. In IPDPS, pages 210–220. IEEE.

[Dryden et al., 2019b] Dryden, N., Maruyama, N., Moon, T., Benson, T., Snir, M.,

and Essen, B. V. (2019b). Channel and filter parallelism for large-scale CNN

training. In SC, pages 10:1–10:20. ACM.

[Elastic, 2023] Elastic (2023). Elastic cloud on kubernetes (eck). [Retrieved 22

January 2023].

[Elsen et al., 2020] Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. (2020). Fast

Bibliography 35

sparse convnets. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 14629–14638.

[Fan et al., 2021] Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z., Wu,

C., Long, G., Yang, J., Xia, L., et al. (2021). Dapple: A pipelined data parallel

approach for training large models. In Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 431–445.

[Fedus et al., 2021] Fedus, W., Zoph, B., and Shazeer, N. (2021). Switch transform-

ers: Scaling to trillion parameter models with simple and efficient sparsity.

[Foundation, 2023] Foundation, W. (2023). Wikimedia downloads.

[Frankle and Carbin, 2018] Frankle, J. and Carbin, M. (2018). The lottery

ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635.

[Gale et al., 2019] Gale, T., Elsen, E., and Hooker, S. (2019). The state of sparsity

in deep neural networks. arXiv preprint arXiv:1902.09574.

[Gale et al., 2020] Gale, T., Zaharia, M., Young, C., and Elsen, E. (2020). Sparse

gpu kernels for deep learning. In SC20: International Conference for High Per-

formance Computing, Networking, Storage and Analysis, pages 1–14. IEEE.

[Hagiwara, 1993] Hagiwara, M. (1993). Removal of hidden units and weights for

back propagation networks. In Proceedings of 1993 International Conference on

Neural Networks (IJCNN-93-Nagoya, Japan), volume 1, pages 351–354 vol.1.

[Han et al., 2015] Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both

weights and connections for efficient neural network. Advances in neural infor-

mation processing systems, 28.

[Han et al., 2021] Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,

Y. (2021). Dynamic neural networks: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence.

Bibliography 36

[Harlap et al., 2018] Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V., De-

vanur, N., Ganger, G., and Gibbons, P. (2018). Pipedream: Fast and efficient

pipeline parallel dnn training. arXiv preprint arXiv:1806.03377.

[He et al., 2021] He, C., Li, S., Soltanolkotabi, M., and Avestimehr, S. (2021).

Pipetransformer: Automated elastic pipelining for distributed training of trans-

formers. arXiv preprint arXiv:2102.03161.

[He et al., 2022] He, J., Zhai, J., Antunes, T., Wang, H., Luo, F., Shi, S., and Li,

Q. (2022). Fastermoe: Modeling and optimizing training of large-scale dynamic

pre-trained models. In Proceedings of the 27th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’22, page 120–134, New

York, NY, USA. Association for Computing Machinery.

[He et al., 2018] He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. (2018).

Amc: Automl for model compression and acceleration on mobile devices. In

Proceedings of the European conference on computer vision (ECCV), pages 784–

800.

[Heim, 2022] Heim, L. (2022). Estimating palm’s training cost.

[Hoefler et al., 2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste,

A. (2021). Sparsity in deep learning: Pruning and growth for efficient inference

and training in neural networks. The Journal of Machine Learning Research,

22(1):10882–11005.

[Hoffmann et al., 2022] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,

Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A., Welbl, J., Clark, A.,

et al. (2022). Training compute-optimal large language models. arXiv preprint

arXiv:2203.15556.

[Huang et al., 2019] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,

M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. (2019). Gpipe: Efficient training of

Bibliography 37

giant neural networks using pipeline parallelism. Advances in neural information

processing systems, 32.

[Jacobs et al., 1991] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.

(1991). Adaptive mixtures of local experts. Neural computation, 3(1):79–87.

[Kahira et al., 2021] Kahira, A. N., Nguyen, T. T., Bautista-Gomez, L., Takano, R.,

Badia, R. M., and Wahib, M. (2021). An oracle for guiding large-scale model/hy-

brid parallel training of convolutional neural networks. In HPDC, pages 161–173.

ACM.

[Kalchbrenner et al., 2018] Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,

Casagrande, N., Lockhart, E., Stimberg, F., Oord, A., Dieleman, S., and

Kavukcuoglu, K. (2018). Efficient neural audio synthesis. In International Con-

ference on Machine Learning, pages 2410–2419. PMLR.

[Kruschke and Movellan, 1991] Kruschke, J. and Movellan, J. (1991). Benefits of

gain: speeded learning and minimal hidden layers in back-propagation networks.

IEEE Transactions on Systems, Man, and Cybernetics, 21(1):273–280.

[Lepikhin et al., 2020] Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,

Y., Krikun, M., Shazeer, N., and Chen, Z. (2020). Gshard: Scaling giant

models with conditional computation and automatic sharding. arXiv preprint

arXiv:2006.16668.

[Lewis et al., 2021] Lewis, M., Bhosale, S., Dettmers, T., Goyal, N., and Zettle-

moyer, L. (2021). Base layers: Simplifying training of large, sparse models. In

International Conference on Machine Learning, pages 6265–6274. PMLR.

[Li, 2022] Li, C. (2022). Openai’s gpt-3 language model: A technical overview.

[Li et al., 2016] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016).

Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710.

Bibliography 38

[Li and Hoefler, 2021] Li, S. and Hoefler, T. (2021). Chimera: efficiently training

large-scale neural networks with bidirectional pipelines. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–14.

[Lin et al., 2017] Lin, J., Rao, Y., Lu, J., and Zhou, J. (2017). Runtime neural

pruning. In Proceedings of the 31st International Conference on Neural Informa-

tion Processing Systems, NIPS’17, page 2178–2188, Red Hook, NY, USA. Curran

Associates Inc.

[Lin et al., 2020] Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M. (2020).

Dynamic model pruning with feedback. arXiv preprint arXiv:2006.07253.

[Microsoft, 2023] Microsoft (2023). Microsoft/deepspeed: A deep learning optimiza-

tion library that makes distributed training and inference easy, efficient, and ef-

fective.

[Mocanu et al., 2018] Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,

Gibescu, M., and Liotta, A. (2018). Scalable training of artificial neural net-

works with adaptive sparse connectivity inspired by network science. Nature

communications, 9(1):1–12.

[Molchanov et al., 2017] Molchanov, D., Ashukha, A., and Vetrov, D. (2017). Vari-

ational dropout sparsifies deep neural networks. In International Conference on

Machine Learning, pages 2498–2507. PMLR.

[Morgan, 2022] Morgan, T. P. (2022).

[Mostafa and Wang, 2019] Mostafa, H. and Wang, X. (2019). Parameter efficient

training of deep convolutional neural networks by dynamic sparse reparameteriza-

tion. In International Conference on Machine Learning, pages 4646–4655. PMLR.

Bibliography 39

[Mozer and Smolensky, 1989] Mozer, M. C. and Smolensky, P. (1989). Skeletoniza-

tion: A Technique for Trimming the Fat from a Network via Relevance Assess-

ment, page 107–115. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Narayanan et al., 2021] Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P.,

Patwary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P., Bernauer, J.,

Catanzaro, B., et al. (2021). Efficient large-scale language model training on

gpu clusters using megatron-lm. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, pages 1–15.

[Nvidia, 2023] Nvidia (2023). Nvidia multi-instance gpu (mig). [Retrieved 18 Jan-

uary 2023].

[Prasanna et al., 2020] Prasanna, S., Rogers, A., and Rumshisky, A. (2020). When

bert plays the lottery, all tickets are winning. arXiv preprint arXiv:2005.00561.

[Qararyah et al., 2021] Qararyah, F., Wahib, M., Dikbayır, D., Belviranli, M. E.,

and Unat, D. (2021). A computational-graph partitioning method for training

memory-constrained dnns. Parallel computing, 104:102792.

[Raghu et al., 2017] Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.

(2017). Svcca: Singular vector canonical correlation analysis for deep learning

dynamics and interpretability. Advances in neural information processing sys-

tems, 30.

[Rajbhandari et al., 2020] Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y.

(2020). Zero: Memory optimizations toward training trillion parameter models. In

SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–16. IEEE.

[Renda et al., 2020] Renda, A., Frankle, J., and Carbin, M. (2020). Compar-

ing rewinding and fine-tuning in neural network pruning. arXiv preprint

arXiv:2003.02389.

Bibliography 40

[Sevilla et al., 2022] Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., and

Villalobos, P. (2022). Compute trends across three eras of machine learning. arXiv

preprint arXiv:2202.05924.

[Shazeer et al., 2017] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q.,

Hinton, G., and Dean, J. (2017). Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538.

[Shen et al., 2020] Shen, S., Baevski, A., Morcos, A. S., Keutzer, K., Auli, M., and

Kiela, D. (2020). Reservoir transformers. arXiv preprint arXiv:2012.15045.

[Shoeybi et al., 2019] Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,

J., and Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint arXiv:1909.08053.

[Sinha et al., 2022] Sinha, P., Guliani, A., Jain, R., Tran, B., Sinclair, M. D., and

Venkataraman, S. (2022). Not all gpus are created equal: Characterizing variabil-

ity in large-scale, accelerator-rich systems. arXiv preprint arXiv:2208.11035.

[Smith, 2023] Smith, S. (2023). Pipeline parallelism.

[Smith et al., 2022] Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari,

S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G., Korthikanti, V., et al. (2022).

Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale

generative language model. arXiv preprint arXiv:2201.11990.

[Tanaka et al., 2021] Tanaka, M., Taura, K., Hanawa, T., and Torisawa, K. (2021).

Automatic graph partitioning for very large-scale deep learning. In 2021 IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), pages 1004–

1013. IEEE.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

Advances in neural information processing systems, 30.

Chapter 6: Conclusion 41

[Wang et al., 2022] Wang, Y., Sun, D., Chen, K., Lai, F., and Chowdhury, M.

(2022). Efficient dnn training with knowledge-guided layer freezing. arXiv preprint

arXiv:2201.06227.

[Wortsman et al., 2019] Wortsman, M., Farhadi, A., and Rastegari, M. (2019). Dis-

covering neural wirings. Advances in Neural Information Processing Systems, 32.

[Zhang et al., 2022] Zhang, H., Zheng, L., Li, Z., and Stoica, I. (2022). Welcome to

the ”big model” era: Techniques and systems to train and serve bigger models.

[Zhou et al., 2022] Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V., Dai, A.,

Chen, Z., Le, Q., and Laudon, J. (2022). Mixture-of-experts with expert choice

routing. arXiv preprint arXiv:2202.09368.

[Zhu and Gupta, 2017] Zhu, M. and Gupta, S. (2017). To prune, or not to

prune: exploring the efficacy of pruning for model compression. arXiv preprint

arXiv:1710.01878.

