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ABSTRACT

Autonomous Execution for Multi-GPU Systems: CPU-Free Blueprint

and Compiler Support

Javid Baydamirli

Master of Science in Computer Science and Engineering

September 22, 2023

As multi-GPU systems become more prolific in the field of supercomputing, scien-

tific applications are adapted and scaled up to take advantage of the highly parallel

accelerators for increased performance. However, the traditional model of GPU pro-

gramming leaves much to be desired in multi-GPU settings, wherein communication

among devices - one of the largest points of contention and bottlenecks in scientific

applications - is controlled by the CPU. This kind of one-sided control leads to un-

due latencies incurred by the constant back-and-forth of synchronization and API

calls between the host and devices, and harms application scaling as the number of

GPUs grows.

This work first proposes the fully autonomous CPU-Free execution model for

multi-GPU applications that completely excludes the involvement of the CPU be-

yond the initial kernel launch. We systematically combine several techniques such

as persistent kernels, thread block specialization, and GPU-initiated communication

and synchronization to significantly reduce host-incurred latencies and facilitate fur-

ther optimizations. We benchmark our proposed model on a broadly used iterative

solver, 2D/3D Jacobi Stencil and improve 3D stencil communication latency by

58.8% compared to CPU-controlled baselines on 8 NVIDIA A100 GPUs.

The second part of this work adds compiler support to easily write performant

CPU-Free code in high-level Python by extending the DaCe framework with GPU-

centric communication intrinsics. We compare automatically generated CPU-Free

code to existing distributed facilities in DaCe and observe over 96% performance

improvement in Stencil benchmarks.
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ÖZETÇE

Çoklu GPU Sistemleri İçin Otonom Yürütme: CPU’suz Tasarım ve

Derleyici Desteği

Javid Baydamirli

Bilgisayar Bilimleri ve Mühendisliği, Yüksek Lisans

22 Eylül 2023

Çoklu GPU sistemlerinin süper bilgisayar alanında daha yaygın hale gelmesiyle bir-

likte, bilimsel uygulamalar, artan performans için yüksek paralel hızlandırıcılardan

faydalanmak amacıyla uyarlanmakta ve ölçeklendirilmektedir. Ancak, GPU pro-

gramlamasının geleneksel modeli, bilimsel uygulamalardaki en büyük sorun ve dar-

boğazlardan biri olan cihazlar arası iletişimi, çoklu GPU ortamlarında bırakılmak

istenilen birçok şeyi geride bırakmaktadır - bu tür tek taraflı kontrol, sürekli olarak

ana işlemci (CPU) ile cihazlar arasında senkronizasyon ve API çağrıları arasındaki

gidip gelmenin neden olduğu aşırı gecikmelere yol açar ve cihaz sayısı arttıkça uygu-

lama ölçeklenmesine zarar verir.

Bu çalışma ilk olarak, çoklu GPU uygulamaları için, ilk başlatmanın ötesinde

CPU’nun katılımını tamamen dışlayan, tamamen özerk CPU’suz yürütme mod-

elini önermektedir. Bu amaçla Persistent kernel ’ler, Thread Block özelleştirme,

GPU-başlatılan iletişim ve senkronizasyon gibi çeşitli teknikleri sistematik olarak

birleştirmekle ana işlemci kaynaklı gecikmeleri önemli ölçüde azaltıyor ve diger opti-

mizasyonları etkinleştiriyoruz. Önerdiğimiz modeli, yaygın olarak kullanılan 2D/3D

Jacobi Stencil iteratif çözücüde test ediyoruz ve 8 NVIDIA A100 GPU üzerinde CPU

tarafından kontrol edilen temellere kıyasla 3D Stencil iletişim gecikmesini %58, 8

oranında iyileştiriyoruz.

Bu çalışmanın ikinci bölümü, Python’da performanslı CPU’suz kod yazmayı

kolaylaştırmak için derleyici desteği ekler ve DaCe çerçevesini GPU-merkezli iletişim

özellikleri ile genişletir. Otomatik olarak oluşturulan CPU’suz kodu, DaCe’deki

mevcut dağıtık kodlarla karşılaştırır ve Stencil testlerinde %96’dan fazla performans

iyileştirmesi görürüz.
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Chapter 1

INTRODUCTION

The significance of accelerated computing has increased in recent years, as many

modern HPC systems now equip multi-GPU nodes [Meuer et al., 2023]. Scaling up

applications to exploit such heterogeneity is difficult, however, as communication

among devices can quickly become a performance bottleneck [Shimokawabe et al.,

2011], resulting in poor scaling. The traditional model of GPU programming where

the host serves as the orchestrator of execution by launching kernels, issuing com-

munication, and managing the synchronization of devices, we argue, is a significant

cause of many undue latencies that can be eliminated by granting this control to

the devices.

Though data transfers among devices are more efficient now thanks to advance-

ments in both programming models and GPU hardware, such as peer-to-peer com-

munication [NVIDIA, 2011a], direct GPU interconnents [Foley and Danskin, 2017],

and GPUDirect RDMA [Hamidouche et al., 2015] that create a direct path for data

from one device to another without the need for CPU-side buffers, these transfers

are still initiated by the CPU through host-managed streams and runtime API calls.

On top of controlling communication, the host is additionally responsible for both

in-device and peer synchronization, routing data transfers, and overlapping compu-

tation and communication through the aforementioned means that require kernels

to halt their execution and synchronize with their host in each step.

This work first addresses the issues outlined above and introduces a new pro-

gramming model for communication-bound multi-GPU applications, the CPU-Free

Model, that gives devices full autonomy over their entire execution. We leverage

several techniques such as persistent kernels [Gupta et al., 2012], specialized/co-
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operative thread blocks, GPU-side global synchronization, and GPU-initiated data

transfers through P2P load/stores and NVSHMEM - a GPU-initiated communica-

tion library [NVIDIA, 2022b] - that allow us to eliminate host-incurred latencies and

better utilize device resources. We implement 2D and 3D Jacobi Stencils [Spotz and

Carey, 1995] in the CPU-Free Model as our proof of concept and demonstrate sig-

nificantly improved communication overheads and overall execution times compared

to CPU-Controlled baselines.

Later, considering that writing multi-GPU code in an emerging programming

model can be a daunting task, we generalize the proposed model in a popular high-

level parallel programming framework, DaCe, [Ben-Nun et al., 2019]. We extend

DaCe to support the CPU-Free Model with new GPU-centric communication library

nodes and trivially port distributed DaCe benchmarks [Ziogas et al., 2021] to the

CPU-Free model. We again observe significant performance improvements compared

to the baseline in single node environments.

Overall, our contributions are as follows:

• We introduce the CPU-Free Model - a multi-GPU execution model that that

reduces latencies and achieves better communication overlap by eliminating

host involvement - and detail its core components and implementation.

• We describe and implement iterative 2D and 3D Jacobi Stencils in the proposed

model and provide a blueprint for writing CPU-Free code.

• We evaluate the performance of the implemented applications against CPU-

controlled baselines with various levels of device autonomy.

• We extend DaCe with CPU-Free support to facilitate writing high-level Python

code that compiles to performant CPU-Free device code.
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Chapter 2

BACKGROUND & MOTIVATION

In this chapter, we present background information on multi-GPU communica-

tion and the traditional model of execution in the context of iterative stencil solvers.

We then quantify and detail the shortcomings of the said model and motivate this

research. Additionally, we discuss the DaCe framework, its internals and code gen-

eration.

2.1 Stencil Computation

Iterative Stencil Loops are a widely used technique with many applications in HPC

such as fluid simulations and solving partial differential equations. As an iterative

method, the computation involves regularly updating a structured grid [Meneghin

et al., 2022] in each time step . The Jacobi method in particular - the subject of

the experiments in this work - solves the 2D-Laplace equation, formulated as follows

[NVIDIA, 2022a].

∆u(x, y) = 0∀(x, y) ∈ Ω δΩ

2.2 Multi-GPU Stencil

We present a high-level overview of a typical implementation of a CPU-controlled

multi-GPU stencil in Listing 2.1a as provided by NVIDIA [NVIDIA, 2022a].

In the absence of GPU-side global barriers, the CPU first 1 maintains a time loop

that repeatedly launches the kernels in every iteration. Communication and compu-

tation overlap is achieved by splitting the program into two kernels that are enqueued

in concurrent CUDA streams - comp stream, and comm stream. As such, the CPU

2 launches the compute kernel performing the stencil operations in a comp stream,

and asynchronously performs 3 synchronization with neighbors. Next, the CPU
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// 1 Time loop on CPU

while (iter++ < num_iterations) {

// 2 Launch compute kernel

stencil_kernel<<<..., comp_stream>>>(...)

// 3 Sync with neighboring GPUs

wait_neighbors(comm_stream)

// 4 Compute and communicate boundaries

compute_boundaries<<<..., comm_stream>>>(...)

write_neighbors(comm_stream)

// 5 Sync comm and comp streams

sync(comm_stream, comp_stream)

}

(a) CPU-Controlled Overlapping Stencil Overview

Boundary 

Inner

Domain CUDA

Memcpy

(b) NVIDIA Nsight Timeline at 8 GPUs

Figure 2.1: CPU-Controlled Overlapping Stencil Overview and Nsight Timeline

4 launches a kernel to compute the boundary rows and communicate them to

neighbors as halos, again in the comm stream, to achieve overlap. Thus, step 2 is

overlapped with steps 3 and 4 . Finally, the CPU waits on these two streams before

advancing to the next iteration and synchronizes with neighboring peers. It should

be noted that in the real implementation, this final step is achieved with CPU-side

synchronization methods such as OpenMP and MPI barriers [NVIDIA, 2022a].

Figure 2.2 shows the ratio of computation to communication as well as the over-

lapped portion of the stencil code detailed above in a small domain. We observe that

although the program takes advantage of CUDA streams for hiding communication

latency, the synchronization and kernel latencies, and the CPU-initiated data trans-
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1 GPU
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(a) Pure communication overhead

CPU-Controlled CPU-Free
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20%

40%

60%

80%
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Comm %

CPU-Controlled CPU-Free
0

2

4

6

8

10
Comp sec.
Overlap
Comm sec.

8 GPUs (2048x4096)

(b) Communication overlap ratio

Figure 2.2: (a) Communication and synchronization overheads with no computation

(b) Communication overlap ratio % and total execution time in seconds

fer overhead - even in the presence of a direct data path among devices - are too

high to fully overlap, resulting in much worse scaling. As a result, communication

takes 96% of the execution time, of which only 19% is overlapped with computation.

The CPU-Free version, in contrast, has much lower total overheads, and manages

to hide almost the entirety of the communication latency. Though this kind of high

communication latency can be hidden more easily in large domains when computa-

tion takes a bigger portion, CPU-free execution is of significant interest in strong

scaling cases and in simulation phases where the workload drops, such as boundary

conditions for 2D planes in a 3D discretized domain to solve PDEs [Afanasyev et al.,

2021, Yamaguchi et al., 2017, Wahib and Maruyama, 2014].

2.3 Data Centric Parallel Programming

DaCe is an intermediate representation and a multi-target compiler with a Python

frontend that focuses on data-centric transformations and performance portability

[Ben-Nun et al., 2019, SPCL, 2023]. At the core of DaCe is the Stateful DataFlow

multiGraph IR constructed from high-level Python code with several extensible com-

ponents used in this work to generate CPU-Free code.

A basic DaCe program is an annotated Python function 2.3a, compiled to an

SDFG intermediate representation 2.3b. The core components of the SDFG are as
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import dace as dc

@dc.program

def func(A[N]):

A[1:−1] = (A[:−2] + x[1:−1] + x[2:]) / 3

if name == ’ main ’:

N = 1024

A = np.random.rand(N)

sdfg = func.to sdfg()

sdfg = auto optimize(sdfg, GPU)

sdfg(A=A)

(a) DaCe program written in Python

[i = 1..N - 2]

A[i] = ∑(A[i – 1], A[i], A[i + 1]) / 3 

[i = 1..N - 2]

 A[ N ]

 A[ N ]

 ❶

 ❸

 ❶

 ❹

 ❷

 ❷

A[i], A[i-1], A[i+1]
Volume: 3

(b) Generated SDFG IR (simplified)

Figure 2.3: Sample DaCe program

follows

• 1 Access nodes point to arrays/containers used in the DaCe program.

Outgoing edges indicate read accesses, while incoming edges represent writes.

• 2 Maps represent data parallelism in a DaCe program. Map nodes have

symbolic ranges as shown in 2.3b and can be scheduled to CPU threads or

parallel hardware, like GPUs.

• 3 Memlets indicate data movement between nodes and include information

on the data at hand such as the volume, subset and write conflict resolution.

• 4 Tasklets represent arbitrary computation within a given memory connec-

tion.

• Library nodes are high-level constructs that represent specific functions

such as BLAS operations, MPI calls, and so on. Library nodes expand to the
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components listed above and can include several specializations. We primarily

implement library nodes to generate CPU-Free code.

Once built, Transformations can be applied on the SDFG, both to its entirety

and to subgraphs, using pattern matching. We utilize this facility to resolve certain

prerequisites to CPU-Free execution, as will be discussed in later chapters.
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Chapter 3

CPU-FREE EXECUTION MODEL

This chapter introduces the foundation of this work - the CPU-Free Execution

Model, its core components, benefits over traditional execution, and a Stencil use-

case as a proof of concept. The execution model we propose makes use of several

prerequisites and techniques, such as persistent kernels, thread-block specialization,

GPU-initiated data transfers, and device-side synchronization to completely remove

the CPU from the control path, as discussed below.

3.1 Overview

3.1.1 Persistent Kernels

GPU kernels have traditionally been implemented in a bulk-synchronous manner

- also referred to as discrete kernels in this work. In the case of iterative solvers,

discrete kernels are also scheduled on a per-iteration basis, getting torn down and

relaunched for every time step. Each instance of a GPU kernel is only concerned

with a specific portion of the computation, and unaware of the underlying iterative

structure of the application, as well as possible communication routines enqueued in

concurrent streams. Moreover, synchronization between timesteps required in many

iterative applications to resolve temporal dependencies is implemented on the host

side with implicit synchronization [NVIDIA et al., 2020].

In order to provide GPU more autonomy in such applications, we make use

of persistent kernels [Gupta et al., 2012] where the time loop is moved inside the

kernel, resulting in a single kernel launch for the entirety of the application. Though

not inherently more performant in all cases [Gupta et al., 2012, Zhang et al., 2022,

Zhang et al., 2020], there are wider implications of persistent execution, especially in

multi-GPU scenarios where communication has traditionally been initiated outside
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                      Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync 

TB Specialization

Start i=0

GPU-initiated 
inter-GPU 
communication & 
synchronization 

Figure 3.1: CPU-free execution model leverages persistent kernels, thread-block

(TB) specialization, GPU-initiated data transfers, and device-side synchronization.

Comm: Communication, Comp: Computation.

of devices, as discussed below.

3.1.2 Device-Side Synchronization

Moving the time loop into the device necessitates the need for in-kernel global syn-

chronization for the temporal dependencies mentioned previously. Such in-kernel

synchronization had been limited to a single thread block at most prior to CUDA

9.0 [NVIDIA, 2011b], which introduced the Cooperative Groups API, allowing more

granular synchronization of threads as well as introducing a global barrier. By

itself, the latency difference between implicit synchronization using repeated ker-

nel launches and explicit synchronization is negligible [Zhang et al., 2020], however,

maintaining a single kernel throughout the computation is desirable, as more caching
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optimizations and better shared memory utilization, whose lifetime ends with the

kernel, is possible thanks to the kernel not being destroyed after each time step.

Moreover, similar to implicit kernel synchronization within a single GPU, barriers

among peer devices in discrete multi-GPU kernels are also managed by the CPU,

through host-side barriers provided by interfaces such as OpenMP and MPI. We

again delegate this task to the GPUs using device-side barriers and point-to-point

synchronization with NVSHMEM [NVIDIA, 2022b].

3.1.3 Thread Block Specialization

In order to implement concurrency within a persistent kernel in the absence of

streams, we treat thread blocks as individual execution units and specialize them

for asynchronous tasks, in contrast to their traditional data-parallel usage. Similar to

warp specialization described in [Bauer et al., 2014a], we assign concurrent sub-tasks

to specific colocated thread blocks and synchronize them with the aforementioned

Cooperative Groups facilities. In particular, for Stencil computation, we use TB

Specialization to overlap communication and computation where a number of blocks

in a kernel manage communication and disjoint boundary region computation, while

the remainder of the kernel handles the inner region of the grid.

3.1.4 GPU-Initiated Data Movement

We allow devices to not only move their data independently among peers but also

initiate the transfers autonomously within a long-running persistent kernel, in lieu

of host-initiated memory operations. Such CPU-Free data movement can be imple-

mented with direct loads and stores to and from peer devices’ memories using UVA

[NVIDIA et al., 2020], or with the GPU-centric implementation of OpenSHMEM

[Poole et al., 2011], NVSHMEM, provided by NVIDIA [Potluri et al., 2017, NVIDIA,

2022b]. This work mainly explores the latter, as it provides an optimized API for

fine-grained GPU-initiated communication as well as Cooperative Groups support.
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3.2 Benefits of CPU-free Execution

We observe the following benefits of the proposed CPU-Free execution model in

multi-GPU applications compared to traditional CPU-controlled execution.

1. Reduced API overheads Launching a single kernel that encapsulates all

computation and communication operations eliminates overheads incurred by

host-side API calls to CUDA runtime and possible synchronization required

by them.

2. Reduced communication latency As an extension of the previous point,

GPU-initiated communication has significantly smaller latency compared to

CPU-controlled baselines (Figure 2.2). Being able to communicate and syn-

chronize with peer GPUs without the need to synchronize with the host allows

kernels to begin transfers as soon as the data is ready, enabling more asyn-

chrony.

3. Better overlap and communication hiding Moreover, thanks to reduced

overall communication time, it is easier to overlap communication with compu-

tation, which is most notable in strong scaling scenarios where execution time

becomes increasingly dominated by communication latency. We observe that

the CPU-Free model achieves a great degree of overlap when CPU-controlled

baselines struggle (Figure 2.2).

4. Shared memory usage across iterations As a traditional CPU-controlled

iterative program launches kernels for every time step, the GPU shared mem-

ory, whose lifetime is that of the kernel, cannot be utilized to cache intermedi-

ate results between iterations, necessitating reads and writes from slower global

memory. For memory-bound applications, reducing such accesses has a signif-

icant performance benefit, as shown by [Zhang et al., 2022], who utilize the

large number of registers and shared memory in a single-GPU persistent ker-

nel to cache a portion of the domain. We implement the techniques discussed
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in their work and extend it to multi-GPU for the stencil methods detailed in

later chapters (Figure 6.1).
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Chapter 4

CPU-FREE STENCIL

TB Specialization

HaloInnerBoundary

Comm TB

Comm TB

Comp TBs

…

Halo Update

Domain

Halo Update

Figure 4.1: Domain decomposition, halo updates, and thread block (TB) special-

ization for 2D5pt stencil. While communication (comm) TBs handle the boundary

computation and halo update with neighbors, computation (comp) TBs handle the

inner domain.

Iterative stencil solvers [Strikwerda, 2004] are natural candidates for the pro-

posed execution model as their temporal dependence across the domain requires

data movement among all devices and synchronization at each iteration. Thus, we

present a CPU-free implementation of multi-GPU Jacobi stencils with overlapped

communication as our use case.

The stencil domain can be divided equally among GPUs and split into two in-

dependent parts in each device: the inner domain and the boundary, as illustrated

in Figure 4.1. Halo regions that refer to values in neighboring GPUs’ domains are
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global void CPU_Free_Jacobi(...) {

// Time loop on GPU

while (iter++ < num_iterations) {

//a Compute boundary using top neighbor’s values

if (TB_index == 0) {

// 1 Wait for top neighbor to signal

wait top neighbor(...)

// 2 Compute top boundary using halos

top_boundary = compute(top_halo, south, ...)

// 3 Write to top neighbor’s bottom halo

write top neighbor(top_boundary)

// 4 Signal top neighbor that iteration is done

signal top neighbor(...)

}

// b Compute boundary with bottom neighbor’s values

if (TB_index == 1) { ... }

//c Remaining TBs compute the inner domain

if (TB_index == <rest>) { compute_inner() }

// 5 Synchronize all TBs in kernel

grid.sync()

}}

Listing 4.1: Stencil kernel using CPU-Free model

appended to each chunk and require communication at each time step. As proposed

in [Shimokawabe et al., 2011], we can compute the boundary region independently

of the inner domain and communicate concurrently with neighbors while the bulk

of the inner domain is being processed.

The overlapping design we propose utilizes a persistent kernel that specializes

a number of thread blocks to compute the boundary region and issue communica-

tion routines as shown in Listing 4.1. We move the time loop inside the kernel and

specialize two concurrent thread blocks for the boundary region (a , b ) and the re-

mainder of the device ( c ) for the inner domain. Each of the boundary thread blocks

1 initially waits on a flag for their corresponding neighbor to signal the availability
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of the halo region, and 2 uses the said values to compute its boundary region. They

then 3 proceed to commit the new values into buffers in their neighbors’ memories,

and 4 signal them of their availability. 5 Finally, all thread blocks are synchronized

at the end of the loop before continuing to the next iteration.

An alternative design to specializing thread blocks in one kernel is to have two

co-resident persistent kernels in separate streams, managing boundary and inner

domain processing independently. This kind of configuration is more modular and

easier to adapt to existing single-GPU kernels but requires an extra sync point

between the local pairs of streams in each GPU. We did not observe any significant

performance improvement or degradation from this design compared to the single-

stream version.

Iterative methods, as discussed earlier, benefit greatly from long-running kernels,

as the intermediate results can be cached to be used in subsequent time steps instead

of being committed to global memory every iteration. PERKS by Zhang et al.

[Zhang et al., 2022] demonstrates this by explicitly caching a portion of the domain

in registers and shared memory across iterations through a priority-based caching

scheme. We apply our communication scheme on top of the single-GPU stencil

implementation of PERKS and extend it with minimal intrusions to the upstream

kernel.

4.1 Implementation

We based our stencil code on NVIDIA’s open sources multi-gpu programming mod-

els repository [NVIDIA, 2022a]. Though the samples do not necessarily have the

most optimized computational kernels - the repository focuses exclusively on com-

munication methods - we refer to it as our main baseline for direct comparisons of

communication overhead.

4.1.1 Synchronization and Halo Exchange

In order to synchronize all thread blocks at time steps, we launch our kernels using

the CUDA cooperative groups API, which provides the device-side grid.sync()

https://github.com/NVIDIA/multi-gpu-programming-models
https://github.com/NVIDIA/multi-gpu-programming-models
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call. We utilize signaling operations provided by the NVSHMEM API [NVIDIA,

2022b] for inter-GPU synchronization. Pairs of flags are allocated in the symmetric

heap for top and bottom neighbors - four in total for each processing element - using

nvshmem malloc(). The flags are waited on using nvshmem signal wait until()

in boundary thread blocks before computation begins to ensure neighboring devices

have committed values of the previous time step. The signaling flow is essentially a

semaphore wherein neighboring devices signal the availability of halos of a given time

step by setting the corresponding flag to the value of the next iteration, while waiting

is done by comparing the flag to the current iteration. The signaling operation is

implemented using the composite nvshmemx putmem signal nbi block() call that

asynchronously performs data movement and subsequently updates a given flag at

the destination on completion. This API is also used for writing to halo regions that

reside in neighboring devices’ memories. Synchronizing local concurrent kernels, if

needed, is done by busy waiting on a flag in local device memory.

4.1.2 Thread Block Specialization

We specialize thread blocks to carry out inner computation, boundary computation,

and communication. In order to balance the two phases of execution, we adjust the

number of thread blocks to reserve for boundary computation with the domain size.

We use the following formula to determine work allocation.

boundary TB num =
TB total ∗ boundary size

inner size+ 2 ∗ boundary size

inner TB num = TB total− 2 ∗ boundary TB num

where TB total is the total number of thread blocks available in the device for the

given thread count.

Splitting the thread blocks proportionally to the amount of work is necessary for

smaller and unbalanced 3D domains to achieve proper overlap, as they are suscep-

tible to being bound by the boundary region computation and communication time

otherwise.
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4.1.3 PERKS Integration

We can apply our communication scheme to existing single-GPU kernels by swapping

them into our inner-computation kernel. We extend a single-GPU stencil kernel

provided by PERKS [Zhang et al., 2022], as discussed in Section 4.1, as it is a

highly optimized persistent implementation with explicit caching. We partition the

domain as shown in Figure 4.1 and restrict the PERKS kernel to the inner domain

while keeping it oblivious to the multi-GPU nature of execution, treating it mostly

as a black box. The PERKS kernel is minimally modified to synchronize with

the communication stream at the end of each iteration, and the domain resides

in memory buffers shared by both. Since both kernels access the same buffers in

device memory, we need to make PERKS process a disjoint portion without memory

conflicts, which is done by making it treat the boundary layers as immutable halos.

As PERKS excludes read-only halos in its caching strategy, the kernel freely observes

memory writes from the boundary stream by reading from the global memory in

every iteration.

4.1.4 Limitations

The CPU-Free model, as a result of its persistent execution, requires thread blocks

in kernels to be co-resident, meaning it is only possible to launch kernels with as

many blocks as the device can concurrently run at a given time. This is a limitation

set by the Cooperative Groups API, and disallows oversubscription of thread blocks

to fit the domain, instead delegating this work distribution to the programmer. In

large domains, such manual tiling can introduce inefficiencies compared to discrete

kernel scheduling in CUDA.
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Chapter 5

CPU-FREE CODE GENERATION WITH DACE

Our extensions to DaCe in this work focus primarily on enabling GPU-initiated

communication in distributed data-centric applications. As such, the main contri-

bution of this work is the addition of the GPU-initiated NVSHMEM communication

library.

5.1 Persistent GPU fusion

DaCe provides a GPUPersistentKernel transformation that fuses a given GPU

subgraph into a single persistent GPU kernel. The transformation works well for

simple programs and efficiently fuses Maps1, but handles branches and state changes

conservatively, e.g., scheduling them in a single thread followed by a grid-wide barrier

when global memory is accessed. We relax the barrier generation slightly, limiting it

to subgraph edges, but do not address further inefficiencies in this work, and direct

our efforts towards correct persistent code generation instead.

We additionally implement a specialization of DaCe’s array-to-array copy rou-

tine - now generated inside device kernels - that utilizes GPU threads for better

performance.

5.2 Existing distributed computing support

DaCe provides MPI library nodes with frontend support to allow programs to express

communication directly in Python code [Ziogas et al., 2021]. As MPI communica-

tion is expressed in explicit nodes in the dataflow graph, they participate in the

optimization process and can be modified within transformations and passes. More-

over, DaCe supports high-level multi-dimensional array operations in NumPy syntax

1 Refers to Map nodes in DaCe. See 2.3
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[Harris et al., 2020, Ben-Nun et al., 2019, Ziogas et al., 2021] in communication calls

to further increase programmer productivity.

@dc.program

    req = np.empty((8,), dtype=MPI_Request)

    for t in range(1, TSTEPS):

        dc.comm.Isend(A[1, 1:-1], nn, 0, req[0])

        dc.comm.Isend(A[-2, 1:-1], ns, 1, req[1])

dc.comm.Isend(A[1:-1, 1], nw, 2, req[2])

        dc.comm.Isend(A[1:-1, -2], ne, 3, req[3])

        dc.comm.Irecv(A[0, 1:-1], nn, 1, req[4])

        dc.comm.Irecv(A[-1, 1:-1], ns, 0, req[5])

        dc.comm.Irecv(A[1:-1, 0], nw, 3, req[6])

        dc.comm.Irecv(A[1:-1, -1], ne, 2, req[7])

        dc.comm.Waitall(req)

        B[1+noff:-1-soff, 1+woff:-1-eoff] = 0.2 * (

            A[1+noff:-1-soff, 1+woff:-1-eoff] +

            A[1+noff:-1-soff, woff:-2-eoff] +

            A[1+noff:-1-soff, 2+woff:-eoff] +

            A[2+noff:-soff, 1+woff:-1-eoff] +

            A[noff:-2-soff, 1+woff:-1-eoff])

def jacobi_2d_distr(TSTEPS: dc.int32, A: dc.float64[lM+2, lN+2], B: dc.float64[lM+2, lN+2]):   

            cudaStreamSynchronize(__dace_current_stream);
            static MPI_Datatype newtype;
            MPI_Type_vector((lM)/1, 1, lN + 2, MPI_DOUBLE, &newtype);

            MPI_Waitall(...)

            cudaStreamSynchronize(...) // x times

            MPI_Type_commit(&newtype);
            MPI_Isend(&(_buffer[0]), 1, newtype, _dest, _tag, MPI_COMM_WORLD, _request);
            // ...

            _dace_runkernel(__stream);
            cudaMemcpy2DAsync(..., __stream);
            cudaStreamSynchronize(__stream);

(a) MPI-based communication and generated code

MPI
CUDA API
CUDA HW (OO:41:00 -

[All Streams]

MPI_Waitall [624.042 ms]

dace1

dace2

memcpy

memcpy

MPI_Waitall [600.749 ms]
cuda
Malloc cudaStreamSync cuda

Free

(b) Nsight Timeline of communication calls and kernel launches

Figure 5.1: DaCe 2D Jacobi with strided access (MPI)

Listing 5.1a is an example of a distributed 2D Jacobi implementation utilizing

DaCe’s MPI operations [Ziogas et al., 2021]. We note the four pairs of MPI Send

and Recv calls for north, south, east, and west neighbors of each rank. We also

note the strided array accesses passed to MPI nodes expressed in high-level Python

syntax.

The generated code highlighted in 5.1a includes several stream synchronize calls

in every time step alongside the MPI calls as well as CPU-initiated memcpy oper-

ations. As a result, we observe little to no overlap in this example in the Nsight

timeline 5.1b, as the program is dominated by host-side communication and syn-

chronization calls.
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5.3 NVSHMEM library and in-kernel expansion

We target a similar interface to the provided MPI library with the same level of

abstraction in the NVSHMEM nodes. For the purposes of this work, we focus

mainly on nvshmem putmem *() and nvshmem signal *() family of remote memory

and signaling operations.

@dc.program

def jacobi 1d(A: dc.float64[N], ...):

for t in range(1, TSTEPS):

dc.comm.Isend(A[1], nw, 3, req[0])

dc.comm.Isend(A[−2], ne, 2, req[1])

dc.comm.Isend(A[0], nw, 2, req[2])

dc.comm.Isend(A[−1], ne, 3, req[3])

dc.comm.Waitall(req)

A[1:−1] = ...

Listing (5.1) MPI-based communication

@dc.program

def jacobi 1d(A: dc.float64[N], ...):

for t in range(1, TSTEPS):

nvshmem.PutmemSignal(A[−1], A[1], flags[0], t, nw)

nvshmem.PutmemSignal(A[0], A[−2], flags[1], t, ne)

nvshmem.PutmemSignal(flags[0], t)

nvshmem.PutmemSignal(flags[1], t)

# ..

A[1:−1] = ...

Listing (5.2) NVSHMEM replacements

Listing 5.3: Current DaCe distributed workflow versus revamped communication

calls

To facilitate GPU-initiated synchronization alongside data transfers, we imple-

ment the composite putmem signal *() and signal wait *() calls that use flag-

based atomic signaling for point-to-point synchronization [NVIDIA, 2022b]. These

calls are necessary to ensure correctness without collective synchronization, and su-

persede MPI Send() and MPI Recv() family of calls with slightly different semantics,

as shown in 5.2. The specifics of the usage of these calls are discussed in Chapter

4.1.

5.3.1 Strided and Single-element Access

In order to provide a uniform interface to our library regardless of the shape of arrays,

we implement a compile-time check on the shapes of views passed to library nodes.

As NVHSMEM provides specialized strided and single-element remote memory oper-

ations, namely nvshmem <TYPENAME> iput *()/nvshmem <TYPENAME> iget *() and
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nvshmem <TYPENAME> p(), respectively, we dynamically switch the implementation

of communication nodes to their specialized counterparts when appropriate, as

shown in 5.6. It should be noted that as the aforementioned operations do not have

combined signaling variants [NVIDIA, 2022b], we additionally generate manual sig-

nal (nvshmem signal op()) and memory ordering (nvshmem quiet()) operations

following the remote memory calls when converting from signaled nodes.

@dc.program

def jacobi(A: dc.float64[lM + 2, lN + 2]):

# ...

PutmemSignal(A[1:−1, −1], A[1:−1, 1], flags[2], t, nw)

Listing 5.4: Python code

double∗ dest = gpu A + ((2 ∗ lN) + 3); // etc

nvshmem double iput( dst, src, lN + 2, lN + 2, (lM)/1, nw);

nvshmem quiet();

nvshmemx signal op( s addr, t, NVSHMEM SIGNAL SET, nw);

Listing 5.5: Generated tasklet (simplified)

Listing 5.6: Code generation for strided remote memory operations

5.3.2 Scheduling and Overlap

Due to the limitations of the existing Persistent scheduling of DaCe discussed in Sec-

tion 5.1, we currently schedule all GPU-initiated communication calls and signaling

operations in a single thread followed by a grid sync. While it guarantees correct ex-

ecution, this kind of conservative scheduling is not ideal, as there are limited oppor-

tunities for intra-kernel overlap. In order to ameliorate this, we expand to nonblock-

ing variants of NVSHMEM memory operations, such as nvshmem putmem nbi() by

default in our library nodes. Furthermore, NVSHMEM extended API calls such as

nvshmemx putmem block() that cooperatively use multiple threads in a given thread

blocks or a warp to transfer data, while implemented, are not scheduled correctly

at this time. We additionally provide Mapped specializations of the aforementioned

functions that expand to single-element nvshmem <TYPENAME> p() called by several

GPU threads, as well as Map-less single-element nodes that can be manually placed

in Maps by users. Though both of these options can be scheduled correctly in

persistent kernels and utilize multiple threads and blocks, we focus on and report

single-thread scheduled nonblocking signaled operation as detailed above.
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5.3.3 PGAS Symmetric Memory Allocation

NVSHMEM requires buffers used by the remote memory API, both for storage and

signaling, to be allocated on the symmetric heap [NVIDIA, 2022b]. In order to

selectively allocate buffers as such, we add a new GPU storage type, GPU NVSHMEM

and add support to CUDA code generation for multiple global GPU storage types.

We also add an NVSHMEMArray transformation that automatically sets Access nodes

accessed by NVSHMEM library nodes to GPU NVSHMEM.

5.4 Limitations and Future work

The most substantial component of the CPU-Free Model that is yet to be imple-

mented in DaCe is thread block optimization (sec. 3.1.3), as neither the DaCe

scheduler nor the Python frontend exposes interfaces to address thread blocks indi-

vidually or in groups. Future work will draft new syntax and Map types to allow

such scheduling to be described in code. As a side effect of this, currently, our com-

munication library nodes only schedule calls in either one CUDA thread followed by

a global sync, or parallel maps using all available threads. As such, the level of com-

munication overlap in the generated code is limited, and cooperative NVSHMEM

calls such as nvshmemx putmem block() that collectively use an entire thread block

to transfer data are not supported fully.

Another work we would like to explore in the future is generating more sys-

tematic persistent kernels, as the current persistent fusion transformation in DaCe

rather naively merges a given subgraph into a single kernel. We predict that a

smarter transformation can claim additional performance by taking device resource

availability such as SM count, cache, and shared memory size into consideration.
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Chapter 6

EVALUATION
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Figure 6.1: Weak scaling of 2D Jacobi stencil method with small to large domain

sizes on up to 8 NVIDIA A100 GPUs

This chapter presents the performance scaling of the CPU-Free model compared

to CPU-controlled baselines for 2D/3D Jacobi Stencil methods. The experiments

were conducted on NVIDIA HGX machines with 8 NVIDIA A100 GPUs connected

all-to-all through NVLink. The CUDA toolkit version is 11.8 with driver version

496.29.05 and the NVSHMEM library version 2.7.0 with OpenMPI 4.1.4. We report

the minimum of 5 consecutive runs for each experiment.

Our speedup numbers are calculated and reported according to the following

formula:

Speedup% =
Tbaseline − Tours

Tbaseline

× 100%

where Tx is the execution time of a version in seconds.
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6.1 Handwritten Stencil Benchmarks

6.1.1 Experiment Setup and Code Variants

We categorize the experiments into three groups of domain sizes: small, medium,

and large. The domain sizes are categorized as such based on device saturation:

a small domain has fewer elements than needed to keep the entirety of the device

busy, while the medium version has sufficient elements to utilize all thread blocks,

and large domains over-saturate the device. For a 2D5pt Stencil on an NVIDIA

A100 with 108 SMs, we select our domains as 2562, 20482, and 81922, respectively.

The baselines are taken from NVIDIA’s multi-gpu programming models reposi-

tory [NVIDIA, 2022a], which contains Jacobi kernels with different communication

schemes. We compare our implementations to the four best-performing versions:

• Baseline Copy: Standard CPU-controlled implementation with no explicit

boundary overlap. This version only overlaps memory transfers with kernel

execution using host-side asynchronous cudaMemcpy calls.

• Baseline Overlap: Same as above, but computes boundary rows in separate

streams independently of the inner domain for explicit overlap, and synchro-

nizes using host-side events. The explicit overlap this version performs is

identical to our implementation.

• Baseline P2P: Communication is done through device-side direct load and

stores in peer-to-peer memory. Although the communication is GPU-initiated

in this version, synchronization is handled by the host.

• Baseline NVSHMEM: Uses device-side NVSHMEM calls for communica-

tion. This version utilizes the same family of NVSHMEM memory operations

thatvie we use in our CPU-Free implementation, except in CPU-controlled

discrete kernels. It additionally uses a dedicated kernel to synchronize neigh-

boring GPUs to avoid redundantly synchronizing all processing elements. Both

kernels are launched by the CPU in every time step.
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• CPU-Free: Our implementation as described in Section 4.

We additionally measure multi-GPU PERKS performance with our communi-

cation scheme, as it tiles the compute kernel to overcome the limitations of the

Cooperative Groups API. Lastly, we implement a 3D7pt stencil partitioned across

the z axis, and adapt existing 2D baselines to 3D.
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Figure 6.2: 3D Jacobi stencil weak and strong scaling experiments on up to 8

NVIDIA A100 GPUs

6.1.2 Scaling Experiments

Figure 6.1 shows weak-scaling measurements of per-iteration time in the aforemen-

tioned domain sizes. We vary the domain across all axes in alternating order as we

double the number of devices for our weak scaling study. At 8 GPUs, we achieve

speedups of 41.6% and 48.2% in small and medium domains respectively over the

best-performing baseline (Baseline NVSHMEM), and 96.2% and 95.7% speedup over

the fully CPU-Controlled Baseline Copy Overlap.

It should be noted that the performance degradation we experience in the largest

domains compared to the baselines is due to subpar tiling in the computational

kernels. As per the limitations set by the cooperative groups, kernels can only

be launched in configurations that guarantee the co-residency of blocks, meaning,

in our case, we only allocate one block of 1024 threads on each SM. In order to

process the entire domain, we tile threads in software, which causes inefficiencies

in large domains. We display multi-GPU PERKS results as an alternative, as their

computational kernel provides better tiling. PERKS kernel with our communication
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scheme achieves good weak scaling within a 9% dropoff at 8 GPUs, and 18.8%

speedup over the baseline on the largest domain.

Figure 6.2 shows 3D Jacobi performance. Though the weak scaling displays lower

overall performance due to the large domain, we measure better no-compute time,

which is shown in the same figure in the middle at its largest domain.

Figure 6.2, also conducts strong scaling experiments on a constant large 3D

domain to demonstrate synchronization overheads and the overlap amount as the

number of devices increases. We notice that the CPU-Free version stays largely

flat, while the CPU-controlled baselines degrade. With a small number of GPUs,

each GPU has a large domain that is limited by computation, not communication.

However, as the GPU count increases, communication and overheads become domi-

nant, and CPU-free clearly exhibits its communication advantages, as seen in Strong

Scaling (No Compute) experiments.

6.2 Compiler Generated CPU-Free Code with DaCe

6.2.1 Experiment Setup

We again adapt distributed stencil benchmarks (1D and 2D) from [Ziogas et al.,

2021] as our baselines and convert them to CPU-Free execution. Although the

benchmarks were originally presented for CPU nodes, we trivially port them to

CUDA for fair comparison through the GPUTransform transformation in DaCe. We

additionally apply an auto optimizer pass alongside the included MapFusion trans-

formation.

We construct our CPU-Free program by applying a GPUPersistentKernel on

the baseline code as an additional step and replace MPI calls with NVSHMEM

in accordance with the discussion in Chapter 5. Namely, Send calls are replaced

with signaled Putmem*, and Recv calls are replaced with SignalWait* nodes. We

additionally omit global MPI barriers such as Waitall in favor of more granu-

lar flag-based synchronization already provided by the aforementioned NVSHMEM

calls. No further changes are made to the program structure, execution order, or

communication patterns expressed in the frontend.
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We note that the codes in this section were compiled with CUDA toolkit version

12.2 and NVSHMEM 2.9.0. Our branch is synchronized to DaCe master commit

c432824 and run with Python version 3.10.8.
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Figure 6.3: Comparison of discrete distributed DaCe versus CPU-Free communica-

tion on up to 8 NVIDIA A100 GPUs

6.2.2 Experiment Variants

The applications we demonstrate exhibit two different communication schemes: sin-

gle element put/send to each PE in case of 1D Jacobi 6.3a, and strided access in 2D

6.3b. Namely, the versions demonstrated are as follows:

• Baseline Jacobi 1D: CPU-controlled distributed 1D Stencil DaCe baseline.

Each rank communicates a single element to two neighbors. The generated

communication code schedules all MPI calls asynchronously and synchronizes

with CUDA streams for each call before kernel launch. Host-side device-to-

device cudaMemcpy() calls are generated to copy to global from temporary

buffers.

• CPU-Free Jacobi 1D: CPU-Free implementation of the above using persis-

tent fusion and NVSHMEM communication. All operations are done on the

device side.

https://github.com/spcl/dace/commit/c43282417f35769b8a855a05942d7d8506c41194
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• Baseline Jacobi 2D: Partitions the domain as a grid, giving each rank four

neighbors to communicate with. Schedules MPI calls similarly to Baseline

Jacobi 1D. MPI Type vector is used to communicate strided data.

• CPU-Free Jacobi 2D: CPU-Free implementation of the above. We use

nvshmem <TYPENAME> iput() and nvshmem signal op() for strided access and

signaling.

6.2.3 Scaling Experiments

Figure 6.3 shows our weak scaling experiments of both applications. We begin with

the largest domain sizes included in the original benchmarks [Ziogas et al., 2021]

and scale them up to saturate the device. Similar the experiments in Section 6.1.2,

we increase the domain size as we double the number of devices, and report the

minimum execution time of 5 runs.

Jacobi 1D

At 8 GPUs, we see a performance improvement of 44.5% over the baseline in full

execution time and 26.8% in communication latency 6.3a. Since each device commu-

nicates two elements regardless of the domain size in this application, we attribute

most of the gains here to synchronization overheads.

Jacobi 2D

The improvements are more pronounced in this application where the amount of

communication is greater as each device communicates with four neighbors, two

with strided accesses. We note that the baseline is almost completely dominated

by communication despite the large domain size, which takes up over 99% of the

execution time. We observe a performance improvement of 96.8% at 8 GPUs and a

weak scaling efficiency of 81.2% as shown in 6.3b despite the inefficiencies discussed

above.

It should be noted that the pattern of increased execution time presenting at

2 and 8 GPUs in the baseline is likely due to unbalanced partitioning when the
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number of devices is not a multiple of 4, giving us a rectangular split. We do not

observe such inefficiency in the CPU-Free version.

Following our findings in section 6.1, we again see that CPU-Free execution is

very effective in reducing communication latency. Notably, in the case of Jacobi 2D

exhibiting a large amount of communication and non-contiguous memory access, we

see massive improvements over the baseline by eliminating costly host involvement.

6.3 Overview

In summary, CPU-free may not always be optimal, but it has proven to be highly

effective for small to medium domains when CPU-induced latencies consume a sub-

stantial portion of the runtime and communication/computation can be sufficiently

overlapped. Our approach excels in strong scaling scenarios where the overhead ratio

increases with GPU count. Conversely, traditional CPU-controlled implementations,

both hand-tuned and generated with DaCe, fail to achieve sufficient overlap, causing

communication and computation to be serialized in small-medium domains.
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Chapter 7

RELATED WORK

7.1 Related Work

A number of works have provided and explored the components and building blocks

used in this work to build the CPU-Free Model. Persistent kernels, the first tech-

nique for more autonomy that we discussed was originally presented in the work by

[Gupta et al., 2012]. There have several been works utilizing persistent execution

such as [Chu et al., 2019] that implemented a persistent GPU-based key-value store

for increased throughput. PERKS [Zhang et al., 2022] takes advantage of persis-

tent registers and shared memory in a single GPU to cache intermediate results

and demonstrates significant performance improvements in Stencil and Conjugate

Gradient applications.

The foundation for Thread Block specialization was initially laid in the work by

[Tzeng et al., 2010] and later the Singe DSL by [Bauer et al., 2014b] that employed

warp specialization for irregular computations. Together with persistent kernels,

later work by [Chen et al., 2023] explores cooperative scheduling of both warps

and blocks for irregular applications to build a task-parallel framework. Work by

[Steinberger et al., 2014], WhippleTree, similarly applies persistent kernels to irreg-

ular workloads for graphical applications and features work queues of varying work

item sizes i.e., warps and blocks. Groute [Ben-Nun et al., 2017] is another work

that proposes a runtime for irregular workloads and implements asynchronous GPU

work queues. Juggler [Belviranli et al., 2018] similarly uses both persistent kernels

and a more general form of thread block specialization to implement a task-based

execution model that treats SMs in a device as standalone processing units.

There have been a number of works towards GPU-initiated communication.

Agostini et. al [Agostini et al., 2017, Agostini et al., 2018] explore GPUDirect
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Async which allows devices to trigger and sync CPU-enqueued network transfers.

Though not as sophisticated as current methods, this work is the first, to our knowl-

edge, to grant GPUs power over the control path. [LeBeane et al., 2017] employs a

similar mechanism of triggering network transfers, but implements a NIC hardware

bypass to further eliminate CPU involvement.

NVSHMEM has recently taken the efforts further by providing a comprehensive

API for fine-grained GPU-initiated communication with the PGAS model [NVIDIA,

2022b], and a number of works have explored and assessed it for various applica-

tions [Chen et al., 2022, Potluri et al., 2015, Potluri et al., 2017, Potluri et al.,

2018, Hsu et al., 2020]. NVSHMEM has also seen adoption in several libraries

and frameworks, such as Kokkos as a specialization of their Remote Spaces API

[Ciesko, 2020], PETSc in their PetscSF communication component along with a

communication programming model [Zhang et al., 2021], and LBANN to implement

spatial-parallel convolution [Naoya Maruyama et al., 2020].
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Chapter 8

CONCLUSION

In this work, we first presented a novel execution model for multi-GPU applica-

tions that eliminates host control, giving devices full autonomy. We achieve this by

systematically combining several techniques such as persistent kernels, thread block

specialization, device-side barriers and synchronization, and device-initiated com-

munication. We implement CPU-Free 2D and 3D Stencil benchmarks and conduct

weak and strong scaling studies in several domain sizes with 8 GPUs, and observe up

to 96% speedups over CPU-Controlled baselines of varying degrees of host control.

In the second part of the thesis, we extended the work to a high-level paral-

lel Python framework, DaCe, to automatically generate CPU-Free code. We then

implemented Stencil benchmarks and conducted scaling experiments, similarly ob-

serving significant performance improvements over CPU-controlled code. Finally,

we compared code generated with existing distributed communication facilities in

DaCe, and discussed the future direction of the work.
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