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ABSTRACT

GPU-Centric Communication Schemes: When CPUs Take a Back Seat

Ismayil Ismayilov

Master of Science in Computer Science and Engineering

August 10, 2023

In recent years, GPUs have become the leading accelerator in modern high-performance

systems such that much of HPC computational capability has concentrated in clus-

ters of GPUs. Using multi-GPU acceleration has brought great computational bene-

fits to many HPC and ML applications. However, the need to communicate between

GPUs, both within and across nodes, can quickly become a bottleneck that hinders

application scaling. A significant reason for this is that traditionally communica-

tion has been mediated through the host. In a typical multi-GPU application, the

host orchestrates execution by launching kernels, issuing communication calls, and

acting as a synchronizer for devices. This CPU involvement in the critical path of

execution causes undue overhead and can be delegated entirely to devices to improve

performance in applications that involve multi-GPU communication.

We first present a fully autonomous execution model for single-node multi-GPU

applications that completely excludes the involvement of the CPU beyond the ini-

tial kernel launch. For the proposed CPU-free execution model, we leverage ex-

isting techniques such as persistent kernels, thread block specialization, device-side

barriers, and device-initiated communication routines to write fully autonomous

multi-GPU code and achieve significantly reduced communication overheads. We

demonstrate our proposed model on two variants of the broadly used Conjugate

Gradient (CG) solver, Standard CG, and Pipelined CG. Compared to the CPU-

controlled baselines, the CPU-free model provides a 1.54x and 1.63x speedup for

Standard and Pipelined CG, respectively, on 8 NVIDIA A100 GPUs.

In the second part of the thesis, we conduct an extensive survey of GPU-centric

communication, communication mechanisms proposed in response to the deficiencies

of traditional multi-GPU communication models. At a high level, these advance-

ments reduce the CPU’s involvement in the critical path of execution, give the GPU

more autonomy in initiating and synchronizing communication and fix the seman-
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tic mismatch between multi-GPU communication and computation. We chart out

the landscape of GPU-centric communication, summarize the main methods and

expound on their most salient features, including associated benefits and challenges.



ÖZETÇE

GPU-Odaklı Haberleşme Sistemleri: CPU’ların Arka Koltuğa Geçtiği

Zamanlar

Ismayil Ismayilov

Bilgisayar Bilimleri ve Mühendisliği, Yüksek Lisans

10 Ağustos 2023

Son yıllarda GPU’lar, modern yüksek performanslı sistemlerde önde gelen hızlandırıcı

haline gelmiştir ve bu nedenle HPC hesaplama gücünün büyük bir kısmı GPU

kümelemelerine odaklanmıştır. Çoklu GPU hızlandırma kullanımı, birçok HPC ve

Makine Öğrenmesi uygulamasına büyük hesaplama avantajları getirmiştir. Ancak

GPU’lar arasında, hem düğümler içinde hem de aralarında iletişim kurma ihtiyacı,

uygulama ölçeklendirmesini engelleyen bir darboğaz haline gelebilir. Bunun önemli

bir nedeni, geleneksel olarak iletişimin ana bilgisayar üzerinden yönetilmesidir. Tipik

bir çoklu GPU uygulamasında ana bilgisayar, çekirdekleri başlatarak, iletişim çağrıları

yaparak ve cihazlar için bir senkronizasyon sağlayarak yürütümü yönetir. Bu,

yürütümün kritik yolunda CPU’nun dahil olması, gereksiz bir iş yükü oluşturur

ve çoklu GPU iletişimi içeren uygulamalarda performansı artırmak için cihazlara

tamamen devredilebilir.

İlk olarak, tek düğümlü çoklu GPU uygulamaları için tamamen otonom bir

yürütüm modeli sunuyoruz, bu da başlangıçta çekirdek başlatma dışında CPU’nun

dahil edilmediği anlamına gelir. Önerilen CPU’suz yürütüm modelinde, mevcut

teknikleri, kalıcı çekirdekler, iş parça özelleştirme, cihaz tarafından başlatılan bariy-

erler ve cihaz tarafından başlatılan haberleşme çağrıları gibi teknikleri kullanarak

tamamen otonom çoklu GPU kodu yazmak ve iletişim üzerinde önemli ölçüde azaltılmış

bir iş yükü sağlamak için kullanıyoruz. Önerilen modelimizi, geniş kullanıma sahip

iki farklı türe sahip Conjugate Gradient (CG) çözücüsünün, Standart CG ve Pipelined

CG’nin üzerinde gösteriyoruz. CPU tarafından kontrol edilen yöntemlerle karşılaştırıl-

dığında, CPU’suz model, 8 NVIDIA A100 GPU’sunda Standart CG ve Pipelined

CG için sırasıyla 1.54x ve 1.63x hızlanma sağlar.

Tezin ikinci kısmında, geleneksel çoklu GPU iletişim modellerinin eksiklikler-

ine yanıt olarak önerilen GPU-odaklı iletişimi kapsamlı bir şekilde incelemekteyiz.
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Genel olarak, bu ilerlemeler, yürütümün kritik yolundaki CPU’nun dahilini azalt-

makta, GPU’ya iletişimi başlatma ve senkronize etme konusunda daha fazla özerklik

sağlamakta ve çoklu GPU iletişimi ile hesaplama arasındaki anlamsal uyumsu-

zluğu gidermektedir. Bu tezde GPU-odaklı iletişimi sınıflandırıyor, temel yöntemleri

özetliyor ve faydaları ve zorlukları da içeren en önemli özellikleri üzerinde duruyoruz.
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Chapter 1

INTRODUCTION

GPUs have become the leading accelerator in modern HPC systems, equipping

7 of the 10 leading Top500 supercomputers in the world [Meuer et al., 2023]. As

real-life applications rely on multiple GPUs to solve large problems, communica-

tion among GPUs can quickly become a performance bottleneck, leading to poor

application scaling [Shimokawabe et al., 2011]. In the traditional model of exe-

cution, communication among GPUs in large systems has been mediated through

the host. In the absence of direct peer-to-peer communication, GPU-to-GPU data

transfers had to be routed through the CPU, which incurred larger communication

latencies [Agostini et al., 2017, Hamidouche et al., 2015]. In response to the defi-

ciencies of the traditional model of execution, several advances broadly known as

GPU-centric communication have been proposed. These solutions span a wide spec-

trum of approaches and include hardware innovations like proprietary GPU-to-GPU

interconnects and software mechanisms like GPU-aware MPI. At a high level, these

advancements seek to reduce the CPU’s involvement in the critical path of execution,

give the GPU more autonomy in initiating and synchronizing communication and

fix the semantic mismatch between multi-GPU computation and communication.

While, by the advent of GPU-centric communication, data movement can now

be delegated to the GPU, the communication control flow still sits firmly on the

CPU. Even with direct GPU-to-GPU communication, data transfers are mostly

initiated from the CPU using host-side API calls, putting it in charge of the overall

flow of multi-GPU execution; the CPU enqueues both computational kernels and

communication calls to devices, overlaps them if possible, and synchronizes them

for functional correctness. The CPU also acts as a global barrier for synchronizing
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multiple devices when required. Regardless of whether the communication happens

directly between devices, the presence of the CPU in the control path is implicitly

assumed.

This work argues that freeing the GPU from the host by moving the control

flow to devices has several benefits for multi-GPU applications, particularly in

communication-bound settings. To illustrate these advantages, we propose a dis-

tinct CPU-Free execution model that removes the CPU from said control path and

gives autonomy to GPUs to control their communication and synchronization. In

order to realize this, we leverage and combine four essential programming concepts.

The first technique is to switch from kernels launched sequentially by the host to a

long-running persistent kernel [Zhang et al., 2023, Steinberger et al., 2014]. Second,

we make use of thread block specialization within our persistent kernel to explic-

itly overlap communication and computation by reserving a number of blocks for

each phase. Third, we adopt GPU-initiated communication methods to stage data

movement independently of the CPU. Finally, we hand over the task of multi-GPU

synchronization to the devices themselves and allow them to synchronize with their

peers independently. These changes make GPUs less dependent on the host, allow

for more asynchrony, reduce communication latencies, and lead to better communi-

cation/computation overlap.

We demonstrate the effectiveness of our execution model on the Standard and

Pipelined CG variants of the broadly used Conjugate Gradient (CG) solver. The

CPU-free execution model is a good fit for iterative solvers like CG as their iterative

nature requires communication and computation at each iteration - tasks otherwise

managed by the CPU.

After discussing our CPU-Free model, we broaden our scope and conduct an

extensive survey of GPU-centric communication, communication mechanisms pro-

posed in response to the deficiencies of traditional multi-GPU communication mod-

els. We chart out the landscape of GPU-centric communication, summarize the main

methods and expound on their most salient features, including associated benefits

and challenges. Namely, we taxonomize GPU-centric communication techniques,

discuss vendor-provided mechanisms and elaborate on how these mechanisms give
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rise to larger GPU-centric communication paradigms.

Overall, this thesis makes the following contributions:

• We describe a CPU-free execution model that removes the host from the crit-

ical path, grants autonomy to devices, reduces latencies, and achieves better

communication/computation overlap.

• We design and implement Standard and Pipelined Conjugate Gradient solvers

on multiple GPUs using our CPU-free execution model.

• We evaluate the CPU-free execution model and compare its performance against

CPU-controlled baselines using 8 NVIDIA A100 GPUs. Standard and Pipelined

CG variants observe 1.54x and 1.63x speedup on 18 sparse matrices compared

to their CPU-controlled counterparts.

• We conduct an extensive survey of existing GPU-centric communication meth-

ods. We discuss the vendor-provided mechanisms that reduce CPU involve-

ment in multi-GPU execution, how higher-level paradigms use those mech-

anisms to construct GPU-centric communication libraries and expound on

applications that use those libraries to get performance benefits.
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Chapter 2

BACKGROUND & MOTIVATION
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Figure 2.1: (a) Communication and synch overheads with no computation of our
CPU-free model against CPU-controlled
(b) Left shows communication overlap percentages for CPU-free and CPU-controlled
models. Right shows the execution times.

In this work, we seek to give devices full autonomy by decoupling them from the

CPU during multi-GPU execution. We first note that by the advent of GPU-initiated

communication [Potluri et al., 2013a, Hamidouche et al., 2015, Potluri et al., 2017],

the data path - the path in which data is transferred through communication routines

- can be moved entirely to the GPU. CUDA devices can perform data transfers

among one another through either NVLink [Foley and Danskin, 2017] or PCIe within

a node or through NICs in multi-node systems, both avoiding intermediate host-side

transfers.

Despite the progress made in pushing the data path to the GPU, overall control

of execution - the control path - has stayed resident on the host. First, in single-

GPU applications, the CPU serves as a barrier that synchronizes kernels with each

other. This synchronization is necessary in the case of any iterative solver; to ensure

correctness, the computations for timestep T + 1 can start only after timestep T
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concludes. The CPU satisfies this requirement by launching a kernel every iteration

since kernels launched back-to-back are guaranteed to execute serially by the GPU

scheduler. This way, the kernel launch and teardown act as an implicit barrier

between timesteps. For the rest of this work, we refer to such implicitly-synchronized

kernels as discrete kernels.

For multi-GPU applications, the CPU plays a similarly active role. In addition

to kernel launches, the CPU also issues the communication using host-side APIs

(i.e., ‘cudaMemcpy‘). These calls are issued on the CPU even when the underlying

transmission uses the direct GPU-to-GPU data path. When applications allow

for overlap between independent phases of communication and computation, it is

again the CPU that orchestrates this overlap by enqueueing communication and

computation on separate GPU streams to run concurrently and then synchronize

through GPU events. Moreover, the CPU acts as a global barrier when synchronizing

multiple GPUs, possibly using CPU-side barriers.

// 1 Time loop on CPU

while (iter++ < num_iterations) {

// 2 Launch compute kernel

stencil_kernel<<<..., comp_stream>>>(...)

// 3 Sync with neighboring GPUs

wait_neighbors(comm_stream)

// 4 Compute and communicate boundaries

compute_boundaries<<<..., comm_stream>>>(...)

write_neighbors(comm_stream)

// 5 Sync comm and comp streams

sync(comm_stream, comp_stream)

}

Listing 2.1: Pseudo-code of CPU-controlled stencil solver

Listing 2.1 illustrates the CPU’s involvement in the control path with a stencil

solver using the CPU-controlled model of execution. 1 First, the CPU maintains

a time loop that invokes the computational kernel, communication, and synchro-

nization calls every iteration. 2 The CPU launches the compute kernel in a comp

stream, which performs the stencil operations. 3 The CPU synchronizes with neigh-
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bors to ensure that inbound halos have been received. 4 Next, the CPU launches

a kernel to compute the boundary rows and communicates them as the neighbors’

halos. Both of these routines are enqueued to a different stream, namely comm

stream, to achieve overlap between communication and computation. Thus, step

2 is overlapped with step 3 and 4 . 5 Finally, the CPU synchronizes these two

streams before advancing to the next iteration.

Figure 2.1a presents the communication overheads with no computation - both

synchronization and data movement across GPUs - of CPU-controlled and CPU-free

executions in increasing problem sizes for the 2D Jacobi solver. The CPU-controlled

baseline uses the overlapping implementation shown in Listing 2.1, utilizing host-side

CUDA events and memory copy calls to explicitly overlap communication and com-

putation. The CPU-free version instead uses GPU-initiated calls for both of those

routines. We notice significantly and consistently lower communication overheads

in the CPU-free version in all domain sizes - up to 5.9x at 8 GPUs.

Figure 2.1b shows the ratio of computation and communication overlap of both

versions, along with leftover communication overhead that could not be overlapped.

We note the overflown communication time in the baseline, where it takes over 96%

of the execution, of which only 19% is overlapped with computation, leading to

suboptimal performance. We reclaim 89.7% of the full execution time by reducing

the communication latency 17.5 times. Though high communication latency can be

hidden easily in large domains when computation time dwarfs it, CPU-free execution

is particularly of high importance in strong scaling cases and also in phases in

simulations where the workload drops (for example, computing boundary conditions

for 2D planes in a 3D discretized domain to solve PDEs [Wahib and Maruyama,

2014, Yamaguchi et al., 2017, Afanasyev et al., 2021]).
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Chapter 3

CPU-FREE EXECUTION MODEL

                      Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync 

TB Specialization

Start i=0

GPU-initiated 
inter-GPU 
communication & 
synchronization 

Figure 3.1: CPU-free execution model leverages persistent kernels, thread-block
(TB) specialization, GPU-initiated data transfers, and device-side synchronization.
Comm: Communication, Comp: Computation.

3.1 Overview

We propose an execution model that eliminates the CPU from both the data and

control paths to achieve performance benefits. In order to give full autonomy to

GPUs, we make use of several prerequisites and techniques, such as persistent ker-

nels, thread-block specialization, GPU-initiated data transfers, and device-side syn-
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chronization. Figure 3.1 shows the concepts that constitute the basis of the CPU-free

execution model.

3.1.1 Persistent Kernels

Traditionally, iterative GPU kernels are implemented on a per-iteration basis, mean-

ing a new instance of the kernel is enqueued in a stream for each time step. The

GPU is oblivious to the iterative nature of the computation and supplementary

operations. This kind of execution relies on the CPU to provide implicit device syn-

chronization across iterations to ensure correctness, as most iterative solvers have

temporal dependencies on preceding timesteps. To eliminate such CPU dependence,

we implement a long-running persistent kernel, originally proposed in [Gupta et al.,

2012], into which we move the time loop of the solver. This allows us to grant

more autonomy to the GPU by freeing it from needing to return to the CPU each

iteration.

3.1.2 Thread Block Specialization

Key in our design is the nascent idea of thread block specialization whereby TBs may

work on different tasks within the same kernel (conceptually similar to warp special-

ization [Bauer et al., 2014]). We utilize this idea to achieve communication/compu-

tation overlap to reduce communication latency. Discrete kernels achieve overlap by

enqueueing communication and computation kernels in concurrent streams through

host-side runtime calls and transferring data with asynchronous Memcpy calls that

run independently in copy engines. We accomplish this asynchronous behavior on

the device side by specializing a number of TBs within a kernel to manage commu-

nication while the remainder of the TBs handle the bulk of the computation.

3.1.3 GPU Initiated Data Movement

We use direct GPU-to-GPU data transfers within the kernel and initiate GPU com-

munication among peers without host involvement. Direct GPU-to-GPU data move-

ment is used in two ways: to communicate the actual data and to synchronize neigh-
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boring GPUs. We use NVSHMEM [Potluri et al., 2017, NVIDIA, 2023h], NVIDIA’s

implementation of OpenSHMEM [Poole et al., 2011], for all direct GPU-initiated

data transfers, as it provides a fine-grained device-side API for data movement.

3.1.4 Device-Side Synchronization

Synchronization in a traditional CUDA kernel is limited to threads within a single

thread block, and the kernel launch itself acts as a barrier. Instead, we use device-

wide barriers to synchronize the thread blocks across the persistent kernel. At the

end of each iteration, device-wide barriers introduced in CUDA 9.0 with the Cooper-

ative Groups API are used to synchronize the communication and computation TBs.

Although the latency difference between implicit synchronization using sequential

kernel launches and explicit synchronization within the kernel through grid sync is

negligible [Zhang et al., 2020], it is no longer required for the CPU to orchestrate

the kernel launches just to synchronize threads within a kernel. For synchroniza-

tion between peer GPUs, traditionally, host-side methods, such as OpenMP and

MPI barriers, are used. We move this control back to the GPU using NVSHMEM’s

device-side signaling operations for peer device synchronization.

3.2 Benefits of CPU-free Execution

As a promising alternative to traditional accelerator programming, the CPU-free

execution model has the following benefits over CPU-controlled multi-GPU pro-

gramming.

1. Reduced kernel launch/CPU synchronization overheads. Traditional

implementations require multiple API calls to overlap communication and

computation. These operations would be launched in separate streams to run

concurrently and synchronized through the host. The CPU-free model allows

for greater degrees of kernel fusion as the communication and computation

can be put inside one fused kernel. This is beneficial because (i) one fat kernel

substantially reduces the kernel launch overheads
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2. Reduced communication overheads. We reduce the communication over-

heads by initiating communication on the device side. Since communication

calls can be issued on the device side within the kernel at any point by the

GPU as soon as data is ready, it provides more asynchrony by allowing the

programmer to inline the communication with the computation. In addition,

we reduce cross-GPU synchronization latency by using device-side signaling

operations

3. Communication/Computation overlap. In traditional implementations,

adequate communication/computation overlap can only be achieved when the

domain size saturates the device (all threads are busy). But as the problem size

per GPU decreases, the kernel launch overheads and the API call latencies can

start to dominate the runtime. Because of this, little to no overlap is achieved

as the GPU spends a significant amount of time idle. In line with prior work,

[Chu et al., 2019], we observe that persistent kernels are able to achieve good

overlap even when the domain size is small

4. Caching. We extend the lifetime of a kernel by moving the time loop from the

host to the device. This enables the use of the large volume of shared mem-

ory, registers to cache intermediate results, and prevents wiping out on-chip

memory. As demonstrated by the work by [Zhang et al., 2023], this is par-

ticularly beneficial for iterative kernels with temporal dependencies between

iterations, as the cache would otherwise be destroyed at each time step in a

discrete kernel.

3.3 CPU-Free Conjugate Gradient

We apply our CPU-free execution model on top of the Conjugate Gradient (CG)

solver, an iterative method used to solve linear equations of the form Ax = b where

A is a symmetric and positive definite matrix.

Three primary operations underlie the CG solver: Sparse matrix-vector multi-

plication (SpMV), dot product, and Saxpy. Assuming vectors are equally divided
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𝛾 = r ⊙ r 𝛿 = r ⊙ w 

q = Aw

Saxpy

Dot

SpMV

Reduction

Comm TB Comp TBs

…

Saxpy x 6

All TBs

…

Figure 3.2: Communication/computation overlap with TB specialization for
Pipelined CG where reduction of dot products is overlapped with SpMV. Details
omitted.

among devices when adapting the method to a multi-GPU setting, Saxpys are vec-

tor operations that perform element-wise multiplication and addition on local data

and do not require communication. On the other hand, the computation for SpMV

needs vector entries on neighboring GPUs, and the dot product requires a global

reduction and a follow-up synchronization over all devices to sum the per-GPU dot

contributions. While both SpMV and dot products involve communication, prior

work has shown that the global reduction and synchronization steps for dot products

can become a bottleneck when scaling parallel CG to more nodes [Chronopoulos,

1991, Ghysels and Vanroose, 2014].

The commonly used CG algorithm involves Saxpy(x3), dot product(x2), and

SpMV(x1) operations and has few opportunities for communication-computation

overlap because of strict dependencies between these operations. To take full ad-

vantage of the CPU-free execution model, we also rely on the pipelined CG variant

[Ghysels and Vanroose, 2014, Karp et al., 2022], which introduces auxiliary vectors

to break up dependencies allowing for the dot product reductions to be overlapped
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with the computation for SpMV, at the expense of three additional Saxpys. Fur-

thermore, because the dot products are now also independent of each other, their

communication can be implemented as a single reduction, thus, removing a costly

global synchronization step [Ghysels and Vanroose, 2014]. We refer to the tradi-

tional and pipelined variants as Standard CG and Pipelined CG respectively, and

implement our design for both variants.

Figure 3.2 illustrates the communication/computation overlap we employ in our

Pipelined CG implementation, where the global reduction of dot products is over-

lapped with SpMV. It is important to note that the communication TB does not at

all times only communicate; it exclusively handles communication only when over-

lap can be achieved. In parts of execution where no overlap is possible, it joins the

compute TBs to help with the computation.

Listing 3.1 shows the pseudocode of the CPU-free Pipelined CG that uses this

overlapping scheme. The traditional Pipelined CG implementation would launch up

to nine compute kernels every iteration to perform Saxpy(x6), dot products(x2), and

SpMV(x1) operations. Our design leverages persistent kernels not only to fuse those

nine operations into a single fat kernel but also to move the time loop to the GPU.

In Listing 3.1, step 1 shows the time loop running on the device. Step 2 leans on

the idea of TB specialization for communication-computation overlap by reserving

one thread block for the global dot reductions (communication) while the remaining

TBs handle SpMV (computation). Step 3 uses a GPU-initiated reduce call to

sum over the local dot contributions. 4 and 5 remove the CPU’s involvement in

synchronization by using grid sync to sync within the device and a GPU-side global

barrier to sync across devices.

global
void CPU_Free_PipelinedCG(...) {

// 1 Time loop on GPU

while (iter++ < num_iterations) {

local

dot(r, r, gamma)

local

dot(r, w, delta)

...
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// 2 Specialize one TB for communication

if (TB_index == 0) {

// 3 Multi-GPU reduction

sum

reduce(gamma, delta)

} else {

SpMV(A, w, q)

}

// 4 Sync within device

grid.sync()

...

saxpy(...) //x6

// 5 Sync across devices

multi_gpu.sync()

}}

Listing 3.1: Pipelined CG kernel using CPU-free model

3.3.1 Implementation

To implement the CPU-free model on NVIDIA GPUs, we utilize the CUDA Co-

operative Groups API and NVSHMEM to enable communication and computation

entirely within the kernel. It is worth noting that this approach could also be ap-

plied to AMD GPUs since ROCm supports the Cooperative Groups API, and ROC

SHMEM is functionally equivalent to NVSHMEM [Hamidouche and LeBeane, 2020].

CUDA Samples implements a persistent kernel multi-GPU CG solver with Uni-

fied Memory [NVIDIA, 2022]. We use this sample as the starting point of our

implementation but modify it heavily by opting to use NVSHMEM for communica-

tion.

To partition the domain, we equally divide the vectors across the GPUs and

allocate the chunks as NVSHMEM symmetric objects. We note that NVSHMEM

requires all symmetric object allocations to be the same size. To handle the case

when the number of rows is not exactly divisible by the number of GPUs, we allocate

a few redundant rows which are ignored in all computational kernels. For the sake

of simplicity, we elect to keep a copy of the matrix on each GPU and partition it by
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splitting it into logical chunks.

For the CPU-free versions, we launch the persistent kernel using nvshmemx

collective launch, the cooperative launch utility function provided by NVSHMEM.

Launching with this routine is required when the kernels use NVSHMEM collective

or synchronization APIs, which are extensively employed in our code.

Synchronization

We use the Cooperative Group API’s grid.sync() function to synchronize all threads

within the device. To synchronize across devices, we utilize NVSHMEM’s nvsh-

mem barrier all() function. For the CPU-controlled baselines, we use the host-side

stream-based API equivalent nvshmemx barrier all on stream().

Communication

All communication uses NVSHMEM calls. To get the elements on neighbor GPU’s

vectors for SpMV, both CPU-controlled and CPU-free versions use the nvshmem

double g() device-initiated call, a blocking call that fetches a single double from a

neighbor GPU. For reducing across the dot products, the CPU-free versions use the

nvshmem sum reduce block(). We also experimented with the warp and thread-level

reduction variants but found them to perform worse than the block-level version.

The CPU-controlled baselines use the host-side stream-based equivalent nvshmemx

sum reduce on stream(). We use block-level APIs for CPU-free versions because

that is an explicit advantage of using GPU-side NVSHMEM calls, as block-level

APIs have no host-side equivalents. We also note that using NVSHMEM collective

APIs on the device requires a cooperative kernel launch, making it, in essence, a

persistent kernel.

Limitations

The CPU-free execution model suffers from occupancy limitations set by the Co-

operative Groups API due to its persistent nature. Device-wide barriers are only

supported in cooperative launches that do not oversubscribe the number of thread
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blocks, meaning it is impossible to request more blocks than the device can run con-

currently. For larger domains, such distribution of work is instead delegated to the

programmer (or software), who is required to partition the domain into successive

tiles and iterate over them. This limitation is imposed to guarantee the co-residency

of the thread blocks, as synchronizing across the grid would otherwise be impossible.

3.4 Evaluation

Table 3.1: SuiteSparse matrices used in CG evaluation

Matrix Rows NNZ NNZ/Rows Speedup

Queen 4147 4,147,110 329,499,284 79.45 3.33x

Bump 2911 2,911,419 127,729,899 43.87 2.15x

Flan 1565 1,564,794 117,406,044 75.03 2.59x

audikw 1 943,695 77,651,847 82.28 0.94x

Serena 1,391,349 64,531,701 46.38 1.4x

Geo 1438 1,437,960 63,156,690 43.92 1.91x

Hook 1498 1,498,023 60,917,445 40.67 1.62x

ldoor 952,203 46,522,475 48.86 1.04x

StocF-1465 1,465,137 21,005,389 14.34 1.3x

crankseg 2 63,838 14,148,858 221.64 1.0x

hood 220,542 10,768,436 48.83 1.34x

bmwcra 1 148,770 10,644,002 71.55 1.15x

crankseg 1 52,804 10,614,210 201.01 1.0x

G3 circuit 1,585,478 7,660,826 4.83 2.23x

consph 83,334 6,010,480 72.13 1.3x

tmt sym 726,713 5,080,961 6.99 2.8x

ecology2 999,999 4,995,991 5.00 2.56x

thermomech dM 204,316 1,423,116 6.97 1.94x

CPU-Free Pipelined Speedup over CPU-Controlled (geo. mean) 1.63x

This section presents the performance scaling of CPU-free execution over CPU-

controlled execution for Standard and Pipelined variants of the Conjugate Gradient
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solve. The experiments presented here were conducted on NVIDIA HGX machines

with 8 NVIDIA A100s connected through NVLink with CUDA toolkit version 11.8

and driver version 495.29.05. The NVSHMEM library version is 2.7.0 with OpenMPI

4.1.4. We repeat each experiment 5 times and report the minimum.

From the SuiteSparse Matrix Collection, we select several symmetric positive

definite (SPD) matrices that can converge in a CG solver [12]. We select a wide

range of matrices to showcase as broad application scaling behavior as possible.

The matrices are summarized in Table 3.1, sorted by the number of non-zeros.

We compare our CPU-free versions against CPU-controlled baselines as explained

below:

• CPU-Controlled Standard CG: Standard CG with discrete kernels and

CPU-initiated communication.

• CPU-Controlled Pipelined CG: Pipelined CG with discrete kernels and

CPU-initiated communication. Uses concurrent GPU streams for overlap. One

stream computes SpMV while the communication stream performs the dot

reductions. The communication stream is launched with a higher priority so

that it is always scheduled first.

• CPU-Free Standard CG: Standard CG with the CPU-free model.

• CPU-Free Pipelined CG: Pipelined CG with the CPU-free model. Uses

TB specialization for overlap as described in Section 3.3.

Additionally, we implement Single GPU Standard, a pure single GPU version

of Standard CG with no communication. We use this reference version for reporting

speedup. We note that we treat the CPU-controlled baselines fairly to the best of

our ability. All versions share the same control flow, placement of within-device and

across-device barriers, computational routines with a thread block size of 1024, and

communication calls. The only difference between the versions is whether they use

the host or device-side APIs.



Chapter 3: CPU-Free Execution Model 17

Flan_1565
Queen_4147

Geo_1438
Bump_2911

Hook_1498
ldoor

tmt_sym
G3_circuit

Serena
ecology2

hood StocF-1465
audikw_1

thermomech_dM

bmwcra_1
consph

crankseg_1
crankseg_2

0

2

4

6

8

10

12

14

Sp
ee

du
p

CPU-Controlled Standard CG (Baseline)
CPU-Controlled Pipelined CG (Baseline)
CPU-Free Standard CG (Ours)
CPU-Free Pipelined CG (Ours)

Figure 3.3: Speedup over Single GPU Standard CG of various sparse matrices on 8
NVIDIA A100 GPUs

While, in practice, the CG algorithm is often coupled with a preconditioner for

faster convergence [Anzt et al., 2017], we do not apply it as it is orthogonal to

our focus on communication. Additionally, we run both Standard and Pipelined CG

algorithms for a fixed number of iterations (5000) and not necessarily to convergence.

Even though these algorithms have different convergence properties, we consider the

numerical stability of either method to be outside the scope of this work.

3.4.1 Scaling Study
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Figure 3.4: Strong scaling study of CG for selected matrices with large, medium,
and small sizes

Figure 3.3 shows the speedups achieved by all versions over the Single GPU

Standard variant. Regardless of the CG variant, CPU-free versions outperform CPU-

controlled baselines on almost all matrices, but the speedup varies across matrices.

As also shown in Table 3.1, CPU-Free Pipelined CG achieves 1.63x geometric mean

speedup over CPU-Controlled Pipelined CG while CPU-Free Standard CG gets

1.54x geometric mean speedup over CPU-controlled Standard CG.
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For most of the largest matrices (i.e. Queen_4147, Bump_291) we observe the sig-

nificant speedup of our versions over the CPU-controlled ones. For these matrices,

SpMV takes up the most time, and there is not enough communication to achieve

good overlap. We can observe this by looking at Queen_4147 in Figure 3.4. For

both CPU-free and CPU-controlled versions, there is little difference between the

Pipelined and Standard variants meaning there is almost no overlap. Another im-

plication of this is that the speedups we observe are a direct consequence of moving

the control path to GPU.

For other matrices (audikw_1, crankseg_2, crankseg_1, ldoor, bmwcra_1), we

observed comparatively subpar speedup compared to the larger matrices. While

these matrices have a smaller number of non-zeros, we observe that they are ir-

regular. When these matrices are split among GPUs, there is a significant load

imbalance; some GPUs spend more time in SpMV than others. The implication is

that all versions are constrained by single-GPU performance. We predict that these

matrices could benefit from matrix reordering.

On the other end, we observe significant speedups for smaller matrices (G3

circuit, tmt sym, ecology2). We note that these matrices have the lowest sparsity

(nnz/row); thus, communication takes up a more significant portion of the runtime.

In this case, good communication-computation overlap can be achieved, which we

observe by comparing the speedups for Pipelined and Standard variants.

3.4.2 Comparisons against PETSc

Furthermore, we compare the CPU-Free model against the state of the art PETSc

numerical computing library. The PETSc baselines are based on version 3.17.4 of the

library. Communication uses CUDA-Aware OpenMPI (v4.1.5) while computation

uses NVIDIA’s cuSPARSE library.

Figure 3.5 shows the speedups achieved by CPU-Free and PETSc versions over

the Single GPU Standard variant. Furthermore, Figure 3.6 show the strong scaling

behavior on all 18 SuiteSparse matrices.

There are several insights we can glean by looking at the performance data.
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Figure 3.6: Strong scaling comparison between CPU-Free and PETSc on all matrices
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First, for several smaller matrices, CPU-Free execution outperforms PETSc even on

a single GPU. These matrices are not compute-bound, and by eliminating latencies,

CPU-Free versions perform the best. Second, the efficacy of CPU-Free execution for

strong scaling can be seen by looking at the scaling behavior for several larger ma-

trices. For these matrices, CPU-Free is constrained by computation and underper-

forms PETSc at smaller GPU counts. However, as the number of GPUs increases,

CPU-Free eventually pulls ahead. Third, CPU-Free can overlap communication

with computation, as evidenced by the superior performance of CPU-Free Pipelined

CG over CPU-Free Standard CG for several matrices. On the other hand, on all

tested matrices PETSc Standard CG consistently underperformed PETSc Pipelined

CG. The PETSc FAQ mentions that the MPI implementation should support asyn-

chronous progress threads to effectively overlap the reductions with computation

[PETSc, 2023]. To the best of our knowledge, progress threads are not supported

in OpenMPI, which could explain the lack of overlap. Experiments with other

MPI implementations could help determine how much overlap PETSc can achieve.

Finally, there are several compute-bound matrices where CPU-Free underperforms

PETSc by a large margin. This is explained by the naive partitioning CPU-Free uses

whereby the matrix is partitioned among GPUs by rows and not by the number of

non-zeros. This leads to load imbalance, with most of the computation levied upon

a single GPU. Reordering the matrix could help in these scenarios. Additionally,

we note that CPU-Free computation kernels are unoptimized, given our focus on

communication. A notable optimization afforded by persistent kernels is the ability

to cache data in shared memory across iterations. We will explore matrix reorder-

ing, and across-iteration shared memory caching to optimize computation in future

work.

3.5 Related Work

Previous work has shown the benefits of reducing CPU involvement in GPU exe-

cution, both along the directions of persistent kernels and GPU-initiated communi-

cation. The work by Kshitij et al. [Gupta et al., 2012] was the first to summarize
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the persistent kernel concept and discuss how persistent kernels help better load

balancing and kernel fusion. Uberkernels that result from the fusion of multiple

stages of a dynamic application are proposed in WhippleTree, mostly focusing on

graphics workloads [Steinberger et al., 2014]. More recently, work by Zhang et

al. [Zhang et al., 2023] demonstrates significant speedup over state-of-the-art sin-

gle GPU stencil and CG baselines by using shared memory and registers to avoid

global memory accesses. Chu et al. [Chu et al., 2019] apply persistent kernels to

GPU-based key-value stores to reduce host-induced kernel launch and memory copy

overheads leading to better scaling and communication-computation overlap.

Several works have provided the building blocks toward the ultimate goal of free-

ing the GPU by reducing the involvement of the CPU in the control path. Early

works experimented with running the entire network stack on the device but, at

the time, suffered from subpar performance and correctness issues due to GPU-NIC

interaction [Daoud et al., 2016, Oden et al., 2014a]. Other works added support for

GPU networking through CPU helper threads [Gysi et al., 2016, Silberstein et al.,

2016]. Agostini et al. [Agostini et al., 2017] introduced GPUDirect Async, which

optimized the control path between GPU and NIC by allowing the GPU to trigger

and sync CPU-enqueued network transfers. Later, [LeBeane et al., 2017] proposed

a NIC hardware mechanism that allowed GPUs to trigger CPU-registered network

operations on the NIC from within the kernel, bypassing the CPU, and showed

promising results on a simulation. GIO examined the GPU’s relaxed memory model

for AMD GPUs and fixed the correctness issues stemming from GPU-NIC interac-

tion [Hamidouche and LeBeane, 2020]. Work on NVSHMEM has also optimized

for both the data and control paths by providing APIs for fine-grained GPU-to-

GPU data movement from within CUDA kernels [Potluri et al., 2015, Potluri et al.,

2017, Potluri et al., 2018, Hsu et al., 2020]. While previously NVSHMEM launched

CPU proxy threads when communicating over InfiniBand, as of NVSHMEM 2.6.0,

the CPU proxy thread can be bypassed, allowing kernel-initiated communication to

be issued directly to the NIC [NVIDIA, 2023k].

Other works have used both persistent kernels and GPU-controlled communica-

tion to introduce execution models and runtime systems for different applications.
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Work by Belviranli et al. [Belviranli et al., 2018] uses a persistent kernel to imple-

ment a task-based execution model that treats thread blocks as standalone execution

units - a more general form of our block specialization scheme. Chen et al. [Chen

et al., 2023, Chen et al., 2022b] present a task-scheduling framework for irregular

applications using both persistent and discrete kernels.

These and other GPU-centric works will be discussed further in the next chapter.

3.6 Summary

In this chapter, we propose a fully federated multi-GPU execution model and show

its viability on the widely used Conjugate Gradient solver using persistent kernels,

thread block specialization, device-initiated communication, and synchronization.

By eliminating costly host-side communication and synchronization routines and

moving the control path to devices completely, we can achieve significantly reduced

communication latencies, allowing better overlap when execution time is bound by

data movement across devices. Our experiments on 8 NVIDIA A100 GPUs showed

that the CPU-Free model outperforms a CPU-controlled, achieving 1.63x and 1.54x

geometric mean speedup over the CPU-controlled baseline for Pipelined and Stan-

dard CG solvers, respectively. Additionally, experiments against the state-of-the-art

PETSc numerical computing library show better strong scaling behavior and supe-

rior communication-computation overlap for most matrices.

This chapter, in part, is a reprint of the material as it appears in the proceedings

of the International Conference on Supercomputing 2023 with the title ”Multi-GPU

Communication Schemes for Iterative Solvers: When CPUs are Not in Charge” by

Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem

Unat. The thesis author was the primary investigator and author of this paper.



Chapter 4: The Landscape of GPU-Centric Communication 23

Chapter 4

THE LANDSCAPE OF GPU-CENTRIC

COMMUNICATION

In the last decade, in response to deficiencies of the traditional model of multi-

GPU execution, several advancements, broadly referred to as GPU-centric commu-

nication, have been proposed. At a high level, these advancements seek to reduce

the CPU’s involvement in the critical path of execution, give the GPU more auton-

omy in initiating and synchronizing communication and fix the semantic mismatch

between multi-GPU computation and communication. These solutions span a broad

spectrum of approaches, including hardware innovations like proprietary GPU-to-

GPU interconnects and software mechanisms like GPU-aware MPI. In this chapter,

we conduct a comprehensive survey of GPU-centric communication. We trace the

history of its development, summarize the work done on GPU-centric communica-

tion methods and discuss their most salient features, including associated benefits

and challenges. We organize this chapter as follows:

• In Section 4.1, we begin discussing GPU-centric communication. We introduce

the terminology and provide a definition for GPU-centric communication.

• In Section 4.2, we start discussing vendor mechanisms that provide the means

to reduce CPU involvement in the critical path of execution. These mech-

anisms are used as building blocks for higher-level GPU-centric paradigms,

which we discuss in Section 4.3. We list the main communication mechanisms

for both intra- and inter-node setups, discuss their benefits and challenges

and rely on existing benchmarking papers to provide insights into their per-

formance.

• In Section 4.3, we identify and discuss the main research paradigms underlying
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GPU-centric communication. This section focuses on user-level implementa-

tions that leverage the vendor-provided mechanisms discussed in Section 4.2.

Among other things, we talk about GPU-aware MPI, GPU-centric collective

communication, and CPU-free networking.

• In Section 4.4, we provide an outlook on the field and discuss potential future

research directions.

4.1 GPU-Centric Communication

We can loosely define GPU-centric communication as mechanisms for multi-GPU

execution which reduce CPU involvement in the critical path. This is a very broad

definition covering a wide spectrum of solutions. These reductions in CPU involve-

ment take the form of optimizations to either the data or control paths. The data

path is the physical channel by which data is relayed, and the control path is where

this data is prepared, initiated, and synchronized. Based on this, we categorize

GPU-centric communication methods as follows:

• Depending on whether the programmer initiates communication from inside a

GPU kernel or on the host CPU, we differentiate between device-initiated and

host-initiated methods.

• Depending on where the communication is actually triggered, we differentiate

between device-triggered and host-triggered methods. This delineation gener-

ally corresponds to the location of the data path. A device-initiated method

can be triggered by the host under the hood. For example, dCUDA provides

MPI-like APIs that can be called from the device but uses CPU threads and

host-side MPI to communicate. That would make it a device-initiated but

host-triggered method.

• Whether the overall control of multi-GPU execution resides on the GPU or the

CPU delineates device-controlled and host-controlled communication methods.
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This corresponds to the location of the control path. It is possible for device-

initiated and device-triggered methods to be host-controlled. For example,

GPUDirect RDMA-based solutions implicitly require CPU synchronization

for GPU-NIC memory consistency.

The term GPU-centric communication refers to both the vendor-level improve-

ments that grant GPUs autonomy in communication and user-level implementations

that leverage those improvements. Since conflating the two could cause some confu-

sion to the reader, we elect to discuss them in separate sections. Section 4.2 focuses

on vendor-provided mechanisms, and Section 4.3 discusses how those mechanisms

give form to higher-level paradigms.

We also point out the distinction between intra- and inter-node multi-GPU exe-

cution. A single GPU-accelerated node comprises a single CPU with multiple GPU

cards attached. In a typical scenario, any given GPU is controlled by a single thread,

with all threads sharing the same memory and address space. A multi-node system

has multiple such nodes where a different process controls each GPU, and memory is

not shared between processes. We clarify the distinction between single- and multi-

node, as the communication landscape changes depending on the setup used, since

inter-node communication requires handling the GPU-NIC interaction and across-

process communication. Methods that work for intra-node communication typically

do not work for inter-node communication. On the other hand, intra-node meth-

ods can handle inter-node communication but may exhibit different performance

characteristics and require additional optimizations.

We also note that some methods rely on the proprietary ecosystems of NVIDIA

or AMD. We try to stay as vendor-agnostic as possible, and, for the most part,

the ecosystems are similar and provide analogous solutions. However, since some

features are only offered by a single vendor, we make note of such vendor-specific

approaches.

Finally, there is an unfortunate lack of consistency in existing literature regard-

ing multi-GPU communication methods terminology. For example, several works

have used the same term, which can simultaneously refer to multiple communica-



Chapter 4: The Landscape of GPU-Centric Communication 26

tion methods (e.g., zero-copy memory). We hope that providing a comprehensive

discussion will help codify the terminology and prevent future ambiguities.

4.2 Vendor Mechanisms

In this section we discuss the vendor-provided mechanisms which allow to reduce

CPU involvement in the critical path of execution. These mechanisms are provided

by GPU programming model runtimes or as part of the extended APIs. Namely,

the communication primitives presented here form the backbone of the higher-level

GPU-centric paradigms we discuss in Section 4.3. For clarity of presentation, we

divide the discussion across the boundaries of intra- and inter-node communication.

4.2.1 Intra-Node Mechanisms

In this section, we focus on four intra-node GPU-centric communication methods:

• P2P DMA Copies

• P2P Direct Load Stores

• Page-Locked / Pinned Memory

• Unified Virtual Memory (UVM)

Prior to discussing these methods, we introduce the auxiliary technologies which

made these methods viable. Namely, we talk about Unified Virtual Addressing

(UVA), GPUDirect P2P, and modern GPU-to-GPU interconnects.

Unified Virtual Addressing (UVA)

UVA is a memory management technique introduced in CUDA 4.0 which allows all

GPUs within a node and the CPU to share the same unified virtual address space

[NVIDIA, 2023a, NVIDIA, 2011]. Prior to UVA, host ↔ device and device ↔ device

copies had to explicitly specify the direction of transfer. With UVA, the physical

memory location can be inferred from pointer values, thus, reducing the overhead of
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managing separate memory spaces and enabling libraries to simplify their interfaces

[Schroeder, 2011].

GPUDirect 2.0 (Peer-to-Peer)

Along with the introduction of UVA, the CUDA 4.0 release added support for direct

Peer-to-Peer communication among GPUs in a single node as long the GPUs shared

the same PCIe root complex [NVIDIA, 2011]. Instead of staging data through the

host, GPUs could now directly access each other’s memory over PCIe, establishing,

for the first time, a direct GPU-to-GPU data path. These changes led to two new

communication mechanisms: P2P DMA Copies whereby a cudaMemcpy call would

trigger a DMA transfer directly between source and target GPU memories and P2P

Direct Load / Stores whereby the GPUs could directly access data by dereferencing

pointers to the remote GPU buffers. GPUDirect P2P also added support for NVLink

(Section 4.2.1) when the latter technology was introduced [NVIDIA, 2023g, NVIDIA,

2012, Rossetti et al., 2016].

GPUDirect P2P provided two main benefits. It eliminated redundant GPU ↔

CPU copies and host buffers, which were required when the transfers were staged

through the CPU. Also, by eliding the need to maintain communication buffers on

the host and providing a new communication mechanism (P2P Direct Load / Stores),

GPUDirect P2P increased the convenience of multi-GPU programming [NVIDIA,

2012].

We note that P2P DMA Copies can also work without UVA support. If UVA

is not enabled, P2P DMA Copies can be performed using the cudaMemcpyPeer()

variants by explicitly specifying the target GPU. However, P2P Direct Load / Stores

will not work without UVA as directly accessing a remote GPU’s pointer presumes

a unified address space [NVIDIA, 2023a].

Modern GPU-centric Interconnects

NVLink is a proprietary interconnect technology that facilitates high bandwidth and

low latency direct access between NVIDIA GPUs. Its design addresses the band-
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width limitations of PCIe, which has been observed to be a transfer bottleneck in

GPU-accelerated applications [Li et al., 2020, NVIDIA, 2017b]. The first generation

of NVLink was introduced along with the Pascal architecture. The P100 GPU had

slots for 4 NVLinks, each providing 40 GB/s bidirectional bandwidth for a total

of 160 GB/s [Foley and Danskin, 2017]. The next generation, NVLink 2.0, was

introduced along with the Volta-based V100 GPU. The V100 increased the number

of NVLink slots to 6 and the bidirectional bandwidth of each NVLink to 50 GB/s

for a total bidirectional bandwidth of 300 GB/s. The subsequent two generations

of NVLink kept the bandwidth of each link at 50 GB/s but increased the num-

ber of supported NVLinks per GPU. Ampere and Hopper microarchitecture-based

GPUs now provide 12 and 18 NVLink slots totaling 600 GB/s and 900 GB/s bidi-

rectional bandwidth, respectively [NVIDIA, 2023i]. Additionally, NVLink can also

connect GPUs with the CPU but this feature is only implemented in IBM Power8

and Power9 CPUs [Li et al., 2020].

While direct GPU-to-GPU P2P communication had already been established

over PCIe with GPUDirect 2.0, it was heavily bottlenecked by the low bandwidths

of PCIe. The introduction of NVLink optimized the bandwidth between NVIDIA

GPUs, turning P2P communication into a viable mechanism for intra-node com-

munication and shifting the data path heavily in favor of GPUs. A disadvantage

of NVLink is that it is not self-routed meaning that if any two given GPUs do not

have a direct NVLink connection communication will have to be routed through

an intermediate GPU [Li et al., 2020]. This limitation is overcome by NVSwitch

[NVIDIA, 2023i], a backboard technology that can implement all-to-all connections

between all GPUs. As an example, a DGX-2 node consists of 16 V100 GPUs that

are all-to-all connected through NVLink and NVSwitch [NVIDIA, 2023c].

P2P DMA Copies

Prior to the introduction of GPUDirect P2P, communication between any given 2

GPUs on a single node involved a cudaMemcpy call from GPU0 to the CPU and

then another cudaMemcpy from the CPU to GPU1. With the establishment of a
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direct GPU-to-GPU data path, programmers could now use a single cudaMemcpy

call specifying GPU0 and GPU1 source and destination buffers, and the data would

flow directly between GPU memories without involving the host CPU. Under the

hood, these copies use the GPU’s DMA / Copy Engines to perform transfers. It is

important to note that DMA copies will bypass the CPU if there is a direct data

path through PCIe or NVLink between the communicating GPUs. If there is no

such data path or if peer access is disabled, the data copies will be staged through

the host.

The cudaMemcpyAsync API variant accepts a GPU stream parameter which

can be used to specify the GPU stream on which the copy will execute. This

can be used to implement communication-computation overlap whereby the copy is

launched in a stream dedicated to communication while the computation is launched

in a separate concurrently running stream. GPU events in combination with the cu-

daStreamWaitEvent API call can be used to both synchronize the communication

and computation streams within a single GPU and synchronize multiple GPUs with

each other. Additionally, to make sure that communication buffers are not overwrit-

ten, double-buffering techniques are typically used [NVIDIA, 2023a, Sourouri et al.,

2014, Harris, 2012b, Kraus, 2021].

P2P Direct Load / Stores

With the introduction of GPUDirect P2P, it became possible for a given GPU to

dereference a pointer to memory residing on a remote GPU. This marked a signifi-

cant shift in the paradigm of multi-GPU execution, enabling direct communication

between GPUs using load and store operations from within the kernel. Direct Load

/ Stores leverage the high levels of parallelism offered by GPUs by allowing each

thread to perform operations on remote memory as if it were local. UVA must be

enabled for P2P Direct Load / Stores as directly accessing a remote GPU’s pointer

presumes a unified address space.

There are typically two approaches when implementing communication with Di-

rect Load / Stores. One is to interleave communication with computation within the
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same kernel. The other is to implement communication in a separate kernel. The

latter strategy is adopted by the leading collective communication libraries NCCL

and RCCL (Section 4.3.2). In this case, communication overlap can be achieved by

launching the communication kernel in a separate stream.

Direct Load/Store-based communication offers several benefits. First, it allows

the programmer to inline communication with computation, potentially reducing

code complexity and improving programmer productivity. The programmer no

longer has to rely on separate models for communication and computation and

can instead combine them within the GPU kernel [Potluri et al., 2015, Potluri et al.,

2018, Langer and Dinan, 2021]. Second, Direct Load/Stores utilize the high lev-

els of parallelism offered by the GPU and can achieve higher levels of bandwidth

and lower latencies compared to DMA copies [Ben-Nun et al., 2020, Pearson, 2023].

Third, Direct Load/Stores can implicitly overlap communication with computation

through the GPU’s inherent latency hiding capabilities. Given both the high levels

of parallelism granted by the GPU and the increasing bandwidth numbers offered

by modern interconnects, the GPU has the capability to hide latencies not only to

local but remote memory as well [Potluri et al., 2015, Potluri et al., 2018, Potluri

et al., 2017]. This is another boon for the programmer as the method of achiev-

ing overlap is shifted from a manual software-based approach implemented by the

programmer through streams and events to an automatic hardware-based overlap.

Since the onus of communication/computation overlap is passed from the program-

mer to the hardware, another implication is that the overlap will improve as the

hardware gets better at hiding memory latencies. Fourth, Direct Load / Stores ex-

pand the scope of applications that could be accelerated through multiple GPUs.

Traditionally, applications with fine-grained communication patterns achieved poor

scalability on multi-GPU systems as computation frequently had to be interrupted

and synchronized in order for the CPU to initiate communication. With Direct Load

/ Stores from within the kernel, GPUs can adapt well to fine-grained communication

patterns. Finally, Direct Load / Stores optimize both data and control planes as the

communication can both be initiated and transferred without leaving the GPU. This

direction is particularly promising when combined with persistent kernels allowing
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GPU execution that is completely autonomous of the CPU. We discuss this line of

research in Section 4.3.3.

Despite the improvements conferred by Direct Load / Stores, there are sev-

eral inherent challenges. First, a fundamental challenge is that communication and

computation contend for the same limited resource as they now both require large

volumes of GPU threads to make progress. This can be especially problematic when

communication is implemented as a separate kernel. If the computation kernel is

launched first, it can potentially monopolize all GPU resources preventing the com-

munication kernel from being launched, effectively, eliminating any possibility of

overlap. It is possible to alleviate this issue by launching the communication stream

with a higher priority so that it is always scheduled first. We note that P2P DMA

Copies do not have this issue as they use the GPU’s DMA / Copy Engines - a physi-

cally separate resource - for communication [Bernaschi et al., 2021]. Second, similar

to single-GPU memory accesses, P2P Direct Load / Stores are highly sensitive to

memory coalescing with random non-coalesced access performing far worse than

coalesced accesses [Ben-Nun et al., 2020]. Such non-coalesced Direct Reads may

expose remote memory latencies which are beyond the GPU scheduler’s ability to

hide, eventually, stalling execution. On a similar note, sporadic non-coalesced Direct

Writes at sub-cacheline granularities may dramatically underutilize the interconnect

[Muthukrishnan et al., 2021].

Page-Locked / Pinned Memory

By default, memory allocated on the host using gpuMalloc() is allocated as pageable

and is not accessible to the GPU. When a transfer between pageable host memory

and device memory is performed, the GPU runtime must first stage the host data

through a temporary buffer in page-locked memory and then copy the data from

page-locked memory to the GPU. To avoid the pageable → page-locked memory

copy, gpuMallocHost() allows allocating page-locked memory directly, skipping the

intermediate copy stage. The CPU and all GPUs can then directly access the pointer

to this chunk of memory without any extra copies. Because of this, page-locked
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memory is also referred to as zero-copy memory. Additionally, page-locked memory

is also called pinned memory [NVIDIA, 2023a, Harris, 2012a].

Several benchmarks have shown that pinned memory can achieve high bandwidth

and low latencies, particularly for host ↔ device transfers [Pearson et al., 2019].

For this reason, it can be used to efficiently coordinate execution between the CPU

and GPUs as pinned memory pointers can be accessed directly across the system.

Pinned memory has also been used with GPUDirect RDMA to improve inter-node

communication [Li et al., 2020]. However, because pinned memory is locked in

physical memory, it can consume a significant amount of memory, and excessive

allocations can degrade overall system performance [Harris, 2012a].

Unified Virtual Memory (UVM)

Introduced in CUDA 6.0, UVM allows for the allocation ofmanaged memory through

cudaMallocManaged() calls by creating a single address space accessible to all pro-

cessors within a single node. UVM works by dividing the requested memory into

pages that are resident on the CPU. The programmer can access memory on a de-

vice without explicit copies. If a memory access is part of a page that is not on the

device, the UVM-driven triggers a page-fault that automatically migrates the page

to the requesting device. The UVM driver can also evict pages from a given de-

vice back to host memory when the total page memory size exceeds device memory

[NVIDIA, 2023a].

UVM provides several benefits in regard to programmability. First, programmers

are exposed a single unified address space that they can access as if the whole

allocated chunk of memory is resident on a single GPU. Any copies occurring around

the system are implicit and hidden from the programmer’s view. Additionally, UVM

allows memory oversubscription whereby more memory can be allocated than all

GPU device memory combined. This is possible since most of the memory can

stay on the CPU and be paged in whenever a given device requests it [NVIDIA,

2021, Shao et al., 2022].

However, UVM offers generally subpar performance due to a problem known
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as page-thrashing. As devices make more and more accesses, UVM migrates pages

back and forth which end up thrashing between GPU and host memories, severely

impacting performance. This is especially problematic in applications with irregular

access patterns where each new access is likely to bring in a new page and migrate an

old one. While optimization techniques like prefetching data to the GPUs to prevent

thrashing can improve performance, in general, UVM performs well in specific cases

and severely outperforms most mechanisms in others.

4.2.2 Inter-Node Mechanisms

We now discuss GPU-centric communication across nodes. These methods address

the two primary challenges in inter-node communication: 1) GPU-NIC interaction

and 2) Inter-process communication.

CUDA IPC

Previously, GPUDirect P2P allowed direct P2P communication across GPUs within

a single node but was restricted to single process setups. Pointers could not be

accessed across process boundaries, so memory copies between GPU buffers had to

go through the host, creating a bottleneck. To overcome this limitation, CUDA

4.1 introduced CUDA Inter-Process Communication (IPC), which enables processes

on the same machine to access device buffers of other processes without additional

copies [NVIDIA, 2017a]. With CUDA IPC, memory handles are created and passed

between processes using standard IPC mechanisms, resulting in lower latencies than

staging copies through the host. However, the overhead of creating memory handles

can be significant and may offset the latency benefits. [Potluri et al., 2012]. An

analogous technology called ROCm IPC is offered by AMD.

While CUDA IPC is technically an intra-node communication mechanism, its

primary use lies in efficiently adapting inter-node communication mechanisms to

intra-node setups. Namely, GPU-Aware MPI implementations, NVSHMEM / ROC

SHMEM, and NCCL / RCCL, all of which create one process per GPU, use IPC

under the hood for intra-node communication.
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GPUDirect 1.0 (Shared GPU-Sysmem)

Introduced in CUDA 3.1, GPUDirect 1.0 allowed GPUs and NICs to share the

same pinned memory region. Prior, the pinned memory regions in system memory

for GPUs and the NIC were separate. By implication, to communicate GPU data

across nodes, the GPU first copies the data to its pinned memory region, the CPU

then copies it to NIC’s memory region, and, finally, the NIC sends it across the

network. The intermediate CPU-initiated copy from GPU → NIC pinned memory

regions introduces CPU overhead and increases the latency for GPU communication.

GPUDirect 1.0 introduced a shared memory GPU-NIC pinned memory region, thus,

avoiding the intermediate CPU-initiated copy. Experimental evaluation of molecular

dynamics software across eight single-GPU nodes has demonstrated improvements

granted by GPUDirect 1.0 [Rossetti et al., 2016, Shainer et al., 2011].

GPUDirect RDMA

With the introduction of GPUDirect RDMA in CUDA 5.0, direct communication be-

tween NVIDIA GPUs across nodes became feasible. GPUDirect RDMA facilitates a

direct communication channel between GPUs and third-party devices through stan-

dard PCIe features. The technology exposes segments of GPU memory on the PCIe

memory resource, referred to as the Base Address Register (BAR) region. This

enables Network Interface Cards (NICs) to directly read/write GPU memory with-

out routing through the host [NVIDIA, 2023d]. Analogously, AMD offers ROCm

RDMA (previously called ROCnRDMA) [AMD, 2023d, AMD, 2023b].

GPUDirect RDMA provides several optimizations to the data path, namely by

eliminating additional copies to host memory, reducing inherent latencies stemming

from GPU-NIC interaction, increasing bandwidth and reducing CPU overhead. Sup-

port for GPUDirect RDMA has been integrated into several leading communication

libraries including GPU-aware MPI implementations, NCCL and NVSHMEM.

A significant limitation of GPUDirect RDMA is that there are no guarantees of

consistency between GPU and NIC memories while a kernel is running. Consistency

is guaranteed only by returning control to the CPU by tearing down the kernel and
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launching a new kernel, thus, limiting communication to kernel boundaries. This

also implies that combining persistent kernels with GPU-initiated inter-node com-

munication will inevitably lead to data correctness issues [NVIDIA, 2023d]. Chu

et al. get around this limitation by issuing a PCIe read from the NIC to GPU

memory which flushes the previous NIC writes to the GPU and guarantees memory

ordering [Chu et al., 2019]. Since version 11.3, CUDA also offers the cudaDevice-

FlushGPUDirectRDMAWrites() function which can be used to enforce consistency

similarly [NVIDIA, 2023b, Davide Rossetti, 2021]. While useful, CUDA still re-

lies on the CPU to enforce GPU-NIC consistency. AMD, on the other hand, has

explicitly corrected the GPU-NIC consistency issues in the context of device-side

communication from persistent kernels and integrated the proposed fixes into ROC

SHMEM [Hamidouche and LeBeane, 2020]. We further discuss this issue in the

context of CPU-free networking in Section 4.3.3.

Gdrcopy

GPUDirect RDMA permits third-party devices, such as NICs, to access GPU mem-

ory directly. The set of APIs used for this functionality is also sufficiently versatile

to expose GPU memory to the CPU more broadly. Gdrcopy, an open-source library,

provides a means of mapping GPU memory to user-space, thus allowing access to

it as if it were regular host memory. GDRCopy also provides optimized copy APIs

and is widely used in high-performance communication runtimes [NVIDIA, 2023e].

Gdrcopy provides a low-latency alternative for transferring data between the

CPU and GPU with minimal overhead. In contrast, cudaMemcpy uses the GPU

DMA / Copy Engines to move data between the CPU and GPU memories, resulting

in latency overheads and lower performance for small data sizes. With GDRCopy,

the CPU can directly access GPU memory through BAR mappings, facilitating low-

latency copies between GPU and CPU memories. [NVIDIA, 2023e, Davide Rossetti,

2021]. AMD does not explicitly provide an alternative technology, however, anal-

ogous capabilities are offered by the PCIe LargeBar feature of the ROCm driver

[Shafie Khorassani et al., 2021, Khaled Hamidouche, 2018].
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Despite the benefits, there are some caveats to using Gdrcopy. While DMA copies

rely on the GPU’s DMA / Copy Engines, Gdrcopy consumes CPU core cycles and

hardware buffers. Furthermore, enabling Gdrcopy requires installing and loading a

separate kernel module which may add extra complexity. Additionally, Gdrcopy is

optimized for small data sizes and may not perform well for larger transfers [NVIDIA,

2023e, Shafie Khorassani et al., 2021, Davide Rossetti, 2021].

GPUDirect Async

While previous GPUDirect technologies focused on improving the data path, GPUDi-

rect Async optimizes the control path between the GPU and the NIC. Introduced in

CUDA 8.0, it enables GPUs to initiate and synchronize network transfers, thereby

reducing the CPU’s involvement in the critical path. GPUDirect Async works by

having the CPU pre-register messages, which the GPU kernel can then trigger by

ringing a doorbell on the NIC. As a result, the GPU can continue executing while the

communication is being triggered, rather than needing to stop for the CPU to initi-

ate the communication, as was previously necessary [Agostini et al., 2017, Agostini

et al., 2018].

Although GPUDirect Async has led to improvements in efforts to move the con-

trol path away from the CPU, it still does not completely transfer the control path

to the GPU since communication is limited to kernel launch boundaries. Essentially,

the GPU can only initiate messages previously registered by the CPU. Further im-

provements to GPUDirect Async are implemented as part of the IBGDA transport

in the NVSHMEM library (Section 4.3.3).

4.3 GPU-Centric Communication Paradigms

We now discuss the main GPU-centric communication paradigms that have sprouted

in recent literature.
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4.3.1 GPU-Aware MPI

Given that MPI is the de facto lingua franca of HPC, much effort has gone into

making MPI communication interoperable with GPU programming models. This

work has culminated in GPU-Aware MPI, typically defined as MPI implementations

that can differentiate between host and device buffers. Prior to GPU-Aware MPI, all

multi-GPU communication had to be staged through the host incurring a device →

host copy on the source GPU and a host → device copy on the target GPU. Using

a GPU-Aware MPI implementation, on the other hand, a programmer can supply

device buffers as parameters to the MPI call allowing communication to use the

direct GPU-to-GPU data path established by GPUDirect RDMA or ROCnRDMA.

In the process, GPU-awareness eliminates redundant host ↔ device copies and

simplifies the communication code by eliding the need for host buffers.

MVAPICH2 was the first MPI implementation to begin actively integrating

GPU-awareness into its runtime. Early work done prior to the introduction of

GPUDirect RDMA added basic GPU-awareness whereby users could initiate MPI

calls with buffers residing on the GPU. The resulting communication still had to be

staged through the host, but this was done transparently by the library and opti-

mized using pipelining schemes for the host ↔ device and device ↔ device transfers.

These pipelining schemes were made possible by UVA, which allowed the library to

differentiate between host and device pointers without relying on user hints. The

ensuing GPU-awareness led to performance improvements over the GPU-oblivious

version [Wang et al., 2011a, Wang et al., 2011b, Wang et al., 2014]. A follow-up

work used CUDA IPC to optimize intra-node transfers, which prior had to be staged

through buffers in host memory [Potluri et al., 2012]. Eventually, support was added

for GPUDirect RDMA over the rendezvous protocol allowing transfers to bypass the

host and eliminate redundant host ↔ device copies. This reduced latencies; how-

ever, bandwidth was limited due to existing architectural limitations [Potluri et al.,

2013b]. A subsequent work added support for GPUDirect RDMA over the eager

protocol rectifying the bandwidth limitation and further reducing latencies. Ad-

ditionally, a new loopback mechanism and an early version of Gdrcopy were used



Chapter 4: The Landscape of GPU-Centric Communication 38

to eliminate expensive host ↔ device cudaMemcpys [Shi et al., 2014]. Another

work extended point-to-point MPI calls to support GPUDirect Async allowing the

GPU to progress the communication enqueued by the CPU, thus, optimizing the

control path [Venkatesh et al., 2017]. Other works have also increasingly focused

on adding UM-awareness to MVAPICH2-GDR [Banerjee et al., 2016, Hamidouche

et al., 2016, Manian et al., 2019].

While MVAPICH2 certainly paved the way for GPU-aware MPI, other leading

MPI implementations have also integrated support for GPU-awareness. OpenMPI

[OpenMPI, 2023a, Wu et al., 2016], HPE Cray MPICH [HPE, 2021], MVAPICH2

and IBM Spectrum MPI [MPI, 2021] natively support CUDA-awareness. OpenMPI

also supports CUDA through UCX. Given the wider deployment of NVIDIA GPUs,

the literature on ROCm-aware MPI is sparse. Existing MPI implementations with

the sole exception of MVAPICH2 rely on UCX for ROCm-awareness [AMD, 2023a,

AMD, 2023c, OpenMPI, 2023b]. On the other hand, Khorassani et al. provide

a native ROCm-aware runtime for MVAPICH2 which outperforms OpenMPI with

UCX on a cluster of AMD GPUs [Shafie Khorassani et al., 2021]. To the best of our

knowledge, Spectrum MPI cannot be made ROCm-aware.

Despite the benefits of GPU-aware MPI, there are inherent challenges with MPI-

GPU integration. Most importantly, there is a fundamental semantic mismatch

between MPI and GPU programming models. As discussed in Section 2, GPUs

operate on the concept of streams which are command queues that guarantee or-

dering among GPU operations. The GPU scheduler ensures that kernels and other

operations launched on a stream execute in the order they were enqueued and do so

with correct data dependencies. Since kernel launches are asynchronous and do not

block the host, GPU runtimes can pipeline kernel launches and overlap the launch

latencies behind kernel execution. The semantic mismatch between the MPI and

GPU models is that MPI has no awareness of GPU streams. As a result, it is not

possible to enqueue an MPI call on a given GPU stream or for a GPU stream to

wait on the completion of a pending MPI routine. By implication, interlacing MPI

calls with GPU kernels will require host-blocking synchronizations in order to main-

tain data correctness. For example, before initiating an MPI send, the programmer
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has to block the host to synchronize all streams which operate on the send buffer.

Similarly, waiting on completion of pending MPI communication will also require

host-blocking synchronization. In either case, these forced synchronizations impair

kernel launch pipelining, prevent opportunities for overlap and force the program-

mer into alternating bulk phases of communication and computation. [Dryden et al.,

2018, Zhang et al., 2021].

The semantic mismatch between MPI and the GPU ultimately stems from trying

to combine a CPU-centric communication runtime that has no concept of streams

with GPU-based computation, which, by design, relies on streams for concurrency,

synchronization, and overlap. This fundamental issue is unlikely to be addressed

by piecemeal solutions. We see two possible non-mutually exclusive paths for re-

solving the semantic mismatch. The first is making MPI runtimes stream-aware

by adding an explicit stream parameter to MPI routines. This would solve the

issue of impaired kernel launch pipelining and allow MPI calls to seamlessly inte-

grate into GPU runtimes. The second is providing the option of device-initiated

MPI calls. This would reduce the programmer burden of juggling two distinct pro-

gramming models and, additionally, provide implicit communication-computation

overlap. Both directions have been explored in the literature on a limited scale.

The FLAT compiler automatically converts device-side MPI calls to their host-side

equivalents [Miyoshi et al., 2012]. dCUDA implements device-side operations with

MPI semantics but uses CPU helper threads for the actual communication. They

rely on the GPU’s inherent memory latency hiding capabilities to implicitly over-

lap communication with computation, ultimately outperforming a GPU-aware MPI

baseline [Gysi et al., 2016]. Namashivayam et al. explore new communication

schemes to introduce GPU stream-awareness in MPI. They use the triggered op-

erations feature on HPE Slingshot 11 interconnect, allowing the CPU to enqueue

communication and synchronization operations to the NIC, which the GPU can

then trigger. This reduces CPU involvement in the critical path and eliminates

expensive synchronizations. While intra-node experiments show some performance

benefits, the proposed scheme falters in intra-node setups as progress threads need

to be used to emulate deferred execution semantics [Namashivayam et al., 2022]. A
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follow-up work eliminates progress threads for intra-node communication, opting to

use P2P Direct Load Store-based GPU kernels and GPU IPC-based mechanisms in-

stead. The evaluation shows performance improvements over stream-oblivious MPI

baselines [Namashivayam et al., 2023].

4.3.2 GPU-Centric Collectives

As deep learning models get ever larger, their compute requirements necessitate

deploying training across multiple GPUs. In line with this, many works use GPU-

centric mechanisms to optimize multi-GPU training. Given the prevalence of col-

lective communication in deep learning training, several works attempt to provide

efficient collective primitives.

NCCL

NCCL (NVIDIA Collective Communication Library) is a software library that offers

topology-aware collective primitives for inter-GPU communication [NVIDIA, 2023f].

Additionally, since version 2.7, NCCL also provides point-to-point communication

APIs. AMD offers an analogous library called RCCL.

Traditional CPU-centric multi-GPU collectives were implemented using GPU

kernels for local reductions and CPU-initiated copies among the GPUs. This ap-

proach incurs several kernel launch and communication call latencies and, addition-

ally, requires intermediate buffers on the host. NCCL takes a different approach by

implementing the communication and computation for the collective together in a

single kernel [NVIDIA, 2016]. The first version of NCCL, NCCL 1.0, only supported

intra-node communication, which was implemented using P2P Direct Load / Stores.

NCCL 2.0 added support for inter-node communication, which relies on GPUDirect

RDMA and proxy threads running on the CPU [Jeaugey, 2017, Jeaugey, 2019].

NCCL has gained significant traction in the HPC community, especially in the

realm of deep learning frameworks, owing to its efficient collectives and streamlined

API. It has been integrated as a communication backend for several state-of-the-art

deep learning frameworks, including Pytorch, Tensorflow, MXNet, Caffe, CNTK,
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and Horovod [Weingram et al., 2023].

NCCL offers several benefits. First, NCCL has been shown to achieve high

levels of bandwidth and parallel efficiency [NVIDIA, 2016, Kraus, 2021, Bernaschi

et al., 2021, Weingram et al., 2023]. Second, NCCL is topology-aware, thus, re-

lieving the programmer of optimizing for the topology. Third, NCCL is natively

compatible with the CUDA programming model and can seamlessly integrate with

it. The NCCL API calls come with a stream parameter, allowing communication-

computation overlap by enqueueing the collective communication on a separate

stream.

Despite its benefits, NCCL does come with its own set of inherent challenges.

First, a fundamental issue of using GPU threads for communication and compu-

tation is that the two routines now contend for the same limited resource. In this

case, if computation is scheduled ahead of the NCCL collective, it can monopolize

all GPU resources, effectively serializing the collective behind the computation. One

workaround around this is to launch the NCCL collective on a higher-priority stream

such that it is always scheduled first [Bernaschi et al., 2021, NVIDIA, 2016]. We

also discussed this issue in the context of P2P Direct Load / Stores in Section 4.2.1.

Further Work on Collectives

Awan et al. use the at the time newly released NCCL to implement efficient intra-

node MPI Bcast as part of MVAPICH2-GDR. Since early versions of NCCL did

not support inter-node communication, hierarchical collective mechanisms are pro-

posed to support scaling out across nodes [Awan et al., 2016]. Subsequent work

challenges NCCL’s hegemony of deep learning collective communication workloads

by proposing new pipelined designs for the MPI Bcast collective. The proposed

design outperforms NCCL2 broadcast for small message sizes and offers comparable

performance for larger ones [Awan et al., 2019]. Blink is a collective communication

library with the express goal of achieving optimal link utilization. To do this, Blink

detects the underlying topology, models the topology as a graph, and then uses a

technique known as packing spanning trees to dynamically generate communication
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primitives. As a result, Blink was shown to reduce model training time on an image

classification task by 40% compared to NCCL2 [Wang et al., 2019]. Dryden et al.

present Aluminum, a GPU-aware library for large-scale training of deep neural net-

works. Namely, Aluminum aims to rectify the inherent drawbacks of both NCCL

and MPI. Aluminum extends NCCL with tree-based algorithms to avoid the latency

bottlenecks of its default ring implementation. Additionally, it adds support for

non-blocking NCCL allreduce operations. For MPI, Aluminum gets around forced

synchronizations stemming from the MPI-GPU semantic mismatch by associating

a single GPU stream with an MPI communicator and synchronizing with respect

only to that stream. The resulting optimizations bring about speedups compared to

GPU-aware MPI and NCCL-based implementations [Dryden et al., 2018]. Soyturk

et al. present ComScribe, a tool that allows monitoring NCCL collective and P2P

communication. However, it is limited to a single node and relies on the deprecated

nvprof tool [Soyturk et al., 2021]. In a recent work, Chen et al. use CUDA IPC

to optimize MPI intra-node all-to-all communication. They use CUDA IPC to pass

device buffers across process boundaries and then communicate using P2P Direct

Load / Stores for small messages and P2P DMA Copies for larger ones [Chen et al.,

2022a].

4.3.3 CPU-Free Networking

As the trend toward GPU-centric communication and greater GPU autonomy con-

tinues to accelerate, several works have suggested migrating most or all of the net-

working stack to the kernel. This is typically done by launching a single long-running

persistent kernel and moving both the data and control paths to the GPU.

In the earliest work, GGAS proposes changes to network devices to implement a

unified global address space that allows moving the control path entirely to the GPU.

This is accomplished by using a persistent kernel that contains the computation,

communication, and synchronization all on the device-side. While the work was the

first of its kind and showed performance improvements compared to a CUDA-Aware

MPI baseline, the experiments were conducted on two GPU nodes with one GPU
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each, while the proposed hardware changes were emulated on an FPGA [Oden and

Fröning, 2013]. Follow-up work showed that GGAS, by virtue of eliminating CPU

involvement in the control path, can achieve further performance improvements and

reduce energy usage compared to CPU-controlled baselines [Oden et al., 2014b,

Klenk et al., 2014b].

Several more works on CPU-free networking followed. Oden et al. use GPUDi-

rect RDMA to allow GPUs to directly interface with Infiniband network devices

without the involvement of the host CPU. They do this by mapping the entire In-

finiband context to the device-side and using the GPU to generate and send work

requests to the HCA. However, because of slow single-thread work request gen-

eration performance on the GPU, the proposed changes deteriorated performance

compared to CPU-controlled baselines [Oden et al., 2014a]. Follow-up work amelio-

rated these performance limitations and showed much more promising results [Klenk

et al., 2014a, Klenk et al., 2015]. Another work combines the proposed GPU-side

Infiniband Verbs with CUDA Dynamic Parallelism to optimize the bottleneck of

intra-kernel synchronization [Oden et al., 2014c]. GPUrdma also implements Infini-

band on the GPU and proposes a GPU-side library for direct communication from

within persistent GPU kernels with zero CPU involvement. The proposed design

outperforms a CPU-controlled baseline on a series of microbenchmarks but runs

into correctness issues resulting from the use of persistent kernels and GPU-NIC

interaction [Daoud et al., 2016]. As discussed in Section 4.2.2, these correctness

issues stem from the fact that memory consistency between GPU and the NIC is

guaranteed only at kernel boundaries, and persistent kernels which never synchro-

nize with the CPU violate this guarantee. Silberstein et al. implement GPUNet,

which provides GPU-side socket abstractions and networking primitives. GPUNet

allows invoking the communication on the GPU but does not fully migrate the con-

trol path to the device; instead, it relies on CPU helper threads to perform the

actual communication [Silberstein et al., 2016]. A similar approach is adopted by

dCUDA, which provides device-side APIs with MPI semantics but translates them

to standard MPI calls performed by CPU helper threads [Gysi et al., 2016]. LeBeane

et al. categorized GPU networking methods discussing at length their deficiencies.
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In response, they propose GPU-TN, a NIC hardware mechanism that allows the

CPU to create and register messages with the NIC and the GPU to trigger them

from a running persistent kernel [LeBeane et al., 2017]. Another work, ComP-Net,

uses embedded GPU microprocessors to offload helper threads from the CPU to the

GPU [LeBeane et al., 2018]. While both GPU-TN and ComP-Net show promising

performance, they require hardware changes to the NIC and the GPU and, thus,

rely on simulation to obtain results.

A distinct direction in research on CPU-free networking is that of GPU-centric

OpenSHMEM runtimes, namely, NVIDIA’s NVSHMEM and AMD’s ROC SHMEM

libraries. The two libraries are fundamentally similar but have some differences.

Given its earlier inception, we first discuss NVSHMEM and, in doing so, introduce

concepts fundamental to both libraries. In the ROC SHMEM section, we discuss

its important differences from NVSHMEM.

NVSHMEM

NVSHMEM is NVIDIA’s implementation of the OpenSHMEM specification for

CUDA devices. NVSHMEM is a Partitioned Global Adress Space (PGAS) library

that provides efficient one-sided put / get APIs for processes to access remote data

objects. NVSHMEM supports point-to-point and collective communication between

GPUs both within and across nodes [NVIDIA, 2023j].

NVSHMEM works on the concept of a symmetric heap. During NVSHMEM ini-

tialization, each process that is mapped to a GPU, referred to as a processing element

(PE) reserves a block of GPU memory using nvshmem malloc(). In NVSHMEM,

all memory allocations must be performed collectively, meaning that all symmetric

memory regions within the heap must have identical sizes and must be allocated at

the same time. To access remote memory on a different PE, a given PE requires the

offset for the symmetric memory as well as the rank of the remote PE.

In addition, NVSHMEM provides APIs for synchronizing a group of PEs. These

APIs comprise signal-wait mechanisms that can serve as a means for point-to-point

synchronization and collective synchronization calls that can function as global bar-
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riers. This feature is particularly important since there is a general lack of kernel-side

global barriers, with the CPU typically performing the role of global synchronizer

for devices. The capacity for a device to synchronize efficiently across the device

without terminating kernel execution is a crucial prerequisite for transferring the

control plane to the GPU.

A notable attribute of NVSHMEM is that it offers both host-initiated and device-

initiated APIs. The host-initiated APIs expose an optional stream argument that

can be used to implement communication-computation overlap. For certain calls,

the GPU-initiated variants provide the calls in three granularities: thread, thread

block, and warp. The thread variant means that the call should be performed

by a single device thread and will be executed by that thread. The thread-block

and warp variants require all threads in the corresponding hierarchy to execute the

communication call cooperatively. These variants should be called by all threads

in the corresponding thread block or warp. A previous performance comparison

between the host and GPU-side APIs found negligible differences in performance

between the two, with host-side APIs slightly outperforming the device-side variants

[Groves et al., 2020]. This study was conducted using an early version of NVSHMEM

(0.3.0), which has since seen improvements in GPU-side API performance.

As of version 2.7.0, NVSHMEM introduced the Infiniband GPUDirect Async

(IBGDA) transport built on top of GPUDirect Async [NVIDIA, 2023l]. The IBGDA

transport allows GPUs to issue inter-node communication directly to the NIC, by-

passing the CPU entirely. Without IBGDA, device-side inter-node communication

calls are performed through a proxy thread on the CPU that triggers the correspond-

ing NIC operations. This proxy thread consumes CPU resources and creates a bot-

tleneck in achieving peak NIC throughput for fine-grained transfers [Pak Markthub

and Howell, 2022]. NVSHMEM with IBGDA support, combined with persistent ker-

nels, enables the complete transfer of both data and control paths to the GPU and

marks a significant shift towards fully autonomous multi-GPU execution. However,

as discussed in Section 4.2.2, GPUDirect RDMA only enforces GPU-NIC mem-

ory consistency across kernel boundaries. By implication, a long-running persistent

kernel that never synchronizes with the CPU and communicates across nodes will
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inevitably run into correctness issues. We see this inherent reliance on the CPU for

memory consistency as a significant obstacle toward truly autonomous multi-GPU

execution. One workaround is using a callback mechanism whereby the persistent

kernel signals the CPU to perform a consistency-enforcing API call (i.e., cudaDe-

viceFlushGPUDirectRDMAWrites()). The efficacy of this solution is unclear and

warrants further investigation. Enforcing GPU-NIC memory from inside the kernel

is supported by ROC SHMEM, which we discuss next.

ROC SHMEM

ROC SHMEM is AMD’s implementation of the OpenSHMEM specification for AMD

GPUs. ROC SHMEM offers two communication backends. The first, known as

GPU-IB, implements Infiniband on the GPU, similar to NVSHMEM’s IBGDA trans-

port. The second, called Reverse Offload (RO), uses host-side proxy threads and

offloads communication to the CPU. GPU-IB is the default backend and offers the

best performance [AMD, 2023e].

ROC SHMEM works almost identically to NVSHMEM and offers analogous

APIs. However, there are several significant differences.

First, as mentioned in the previous section, NVSHMEM runs into GPU-NIC

memory consistency problems when intra-node communication is issued from per-

sistent kernels. ROC SHMEM, on the other hand, explicitly addresses this issue

and guarantees correctness when persistent kernels are being used. Hamidouche et

al. analyze the GPU-NIC memory mismatch stemming from the GPU’s relaxed

memory model and propose changes integrated into ROC SHMEM [Hamidouche

and LeBeane, 2020]. This means that ROC SHMEM is the only completely CPU-

free communication mechanism that can correctly move the entire flow of multi-GPU

execution to the device.

Second, ROC SHMEM uses GPU shared memory (local data store (LDS) in

AMD parlance) to store network state for faster access. To the best of our knowl-

edge, this optimization is not implemented in NVSHMEM. While this is most likely

beneficial for execution time, the increased shared memory message could limit oc-



Chapter 4: The Landscape of GPU-Centric Communication 47

cupancy and negatively impact performance [Punniyamurthy et al., 2023, AMD,

].

Third, prior versions of ROC SHMEM required allocating symmetric buffers as

uncacheable in order to prevent stale data from being communicated. However,

as AMD recently introduced intra-kernel cache flush instructions, the data can be

flushed before initiating the network transaction, allowing the data to be cached.

No such instructions are provided by NVIDIA, meaning that NVSHMEM buffers

are likely allocated as uncacheable [Punniyamurthy et al., 2023].

These differences lead us to the following conclusion: ROC SHMEM is explicitly

designed with CPU-free execution in mind and implements more optimizations for

that setting. NVSHMEM has also made strides toward CPU-free execution with

its IBGDA transport but still relies on the CPU for something as fundamental as

GPU-NIC memory consistency. While we have qualitatively compared the two, a

quantitative comparison to determine which is better suited for CPU-free networking

would be helpful and is the subject of future work.

Applications

In recent years, NVSHMEM has increasingly been integrated as a communication

backend into multiple runtimes. PETSc implemented PetscSF, a scalable communi-

cation layer based on NVSHMEM, to complement their MPI-based approach, which

did not work well with CUDA stream semantics and prevented kernel launch pipelin-

ing [Zhang et al., 2021]. Kokkos Remote Spaces, which adds distributed memory

support to the Kokkos programming model, uses NVSHMEM as one of its commu-

nication backends [Ciesko, 2023, Trott, 2018]. An NVSHMEM implementation of

the Kokkos Conjugate Gradient Solver has been shown to outperform the CUDA-

aware MPI implementation while also significantly reducing the size of the code

base [Maruyama et al., 2020]. Choi et al. use persistent kernels and NVSHMEM to

implement a fully GPU-resident runtime system called CharminG that takes inspi-

ration from Charm++ [Choi et al., 2021b]. Livermore Big Artificial Neural Network

(LBANN) implements a spatial-parallel convolution using NVSHMEM that outper-
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forms MPI and Aluminium implementations [Maruyama et al., 2020]. QUDA, a

library for performing computations in lattice QCD, has used NVSHMEM and per-

sistent kernels for improved strong scaling of the Dirac operators [lattice, 2023, Wag-

ner, 2020].

NVSHMEM has also been used in other contexts outside of runtime-based ap-

proaches to achieve performance improvements. Chu et al. combine NVSHMEM

with persistent kernels to implement a state-of-the-art GPU-based key-value store

[Chu et al., 2019]. Xie at al. use NVSHMEM to implement a single-node multi-

GPU sparse triangular solver (SpTRSV) solver which achieves good performance

scalability compared to a UVM-based design [XIE et al., 2021]. Ding et al. com-

bine persistent kernels with NVSHMEM to achieve impressive performance for a

sparse triangular solver (SpTRSV) on single- and multi-node setups. Atos im-

plements both persistent and discrete kernels with NVSHMEM-based communi-

cation to achieve state-of-the-art performance on multi-GPU BFS both within and

across nodes [Chen et al., 2022b]. Wang et al. propose MGG, a system design

that accelerates Graph Neural Networks (GNNs) on multi-GPU systems using a

GPU-centric software communication-computation pipeline that uses NVSHMEM

for fine-grained communication [Wang et al., 2023]. Ismayilov et al. use persistent

kernels and device-side NVSHMEM to implement fully GPU-side Jacobi 2D/3D and

CG solvers which outperform CPU-controlled baselines. They also explicitly reserve

some thread blocks for communication while the remaining concurrently running

ones handle computation. This technique which they call TB specialization, is used

to achieve explicit device-side communication-computation overlap [Ismayilov et al.,

2023]. Punniyamurthy et al. use ROC SHMEM and persistent kernels to overlap

embedding operations with collective communication in deep learning recommenda-

tion models [Punniyamurthy et al., 2023].

Discussion

There are several reasons why we believe CPU-free networking, and GPU-centric

OpenSHMEM in particular, shows promise. First, it addresses the issue of CPU-
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induced latency barriers that are caused by kernel launch and memory copy over-

heads. These barriers become more significant as the number of GPUs increases

and computation per GPU decreases. In latency-bound settings, traditional CPU-

controlled implementations are not able to overlap communication with computation

as the latencies to initiate the operations take longer than the operations them-

selves effectively serializing communication and computation. On the other hand,

CPU-free execution can still achieve adequate levels of overlap even when latencies

dominate [Wagner, 2020, Ismayilov et al., 2023]. Second, the parallelism offered by

within-kernel communication is well-suited for persistent kernels to take advantage

of. With the use of efficient communication and synchronization APIs, this execu-

tion model can achieve higher bandwidths and lower latencies than CPU-controlled

implementations. Additionally, CPU-free execution, by virtue of inlining communi-

cation with computation, is well-suited for applications with fine-grained communi-

cation [Chen et al., 2022b]. Third, ROC SHMEM allows for the first time to fully mi-

grate application execution to the device with zero reliance on CPU helper threads.

ROC SHMEM, in particular, is the only fully device-initiated, device-triggered and

device-controlled method available. NVSHMEM with its IBGDA transport can also

migrate a significant amount of execution to GPU but must still rely on the CPU

for functional correctness.

However, there are several challenges facing this model of execution. One ma-

jor challenge is that persistent kernels can result in reduced occupancy potentially

bottlenecking computation. As of today, if global device or multi-GPU barriers are

required, persistent kernels must be launched in a cooperative manner. This means

that only as many threads can be launched as can run concurrently at the same time

making hardware oversubscription impossible. As a result, workload decomposition

and scheduling, which were previously handled by the hardware scheduler, now need

to be manually done by the programmer. This manual approach is unlikely to be as

efficient as hardware-based scheduling, and compute-intensive applications are likely

to suffer. Furthermore, long-running persistent kernels will consume more registers

and may use shared memory as well (as in ROC SHMEM) limiting occupancy even

further. Nevertheless, we see a two-fold solution to this problem. Firstly, there is a
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large amount of high bandwidth shared memory available across application execu-

tion, which can potentially nullify the performance hit caused by reduced occupancy.

Secondly, we predict that GPU vendors strive more and more for greater GPU au-

tonomy, they introduce APIs that allow for hardware oversubscription. The manual

decomposition can also be handled by an optimized compiler / runtime system.

Another potential problem with NVSHMEM and ROC SHMEM is their ease of

integration into existing runtimes. Both libraries center around a symmetric heap

and all communication buffers must be allocated collectively on the same symmetric

heap by all GPUs. This symmetric allocation requires library specific allocators. Ex-

isting runtimes may find it hard to add support for NVSHMEM and ROC SHMEM

because of the symmetric memory allocation requirement.

4.4 Outlook

We now discuss what we believe to be fertile ground for future research on GPU-

centric communication.

4.4.1 UCX as a Pathway for GPU-Awareness

Unified Communication X (UCX) is an open-source communication framework that

abstracts over several network APIs, programming models, protocols, and implemen-

tations. The idea is to provide a set of high-level primitives while hiding the low-level

implementation details behind the UCX runtime. The relevance of UCX for GPU-

centric communication is that its tagged and stream APIs can be used to implement

a GPU-centric communication layer for both ROCm and CUDA. The actual GPU-

centric communication then uses the corresponding native libraries [Shamis et al.,

2015, The Unified Communication X Library, ].

Using UCX for realizing GPU-centric communication is a recent direction in the

literature that has started to take hold. Perhaps the most relevant example is that

of ROCm-awareness for MPI implementations. Much early work on GPU-aware

MPI was done for NVIDIA GPUs using native CUDA libraries and then integrated

directly into MPI runtimes. Perhaps reticent to replicate the same work to make
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their runtimes ROCm-aware, most MPI implementations provide ROCm-awareness

only through UCX. OpenMPI additionally provides CUDA support through UCX,

besides its native integration. In non-MPI work, Choi et al. extend the UCX layer in

Charm++ to provide GPU-aware communication for several programming models

in the Charm++ ecosystem [Choi et al., 2021a, Choi et al., 2022].

We predict that more runtimes will gravitate toward UCX to add support for

GPU-centric ocommunication. Using UCX APIs frees the programmers from relying

on native vendor-specific APIs and allows adding GPU-aware communication for

both ROCm and CUDA. However, there are some caveats. One is that it needs

to be clarified if GPU-aware UCX can overlap communication with computation.

The second caveat is that the increased generality and convenience may trade off

performance. A performance comparison between GPU-awareness through native

APIs and that provided through UCX would be helpful. In one work in this direction,

Khorassani et al. provide a native ROCm-aware runtime for MVAPICH2, which

outperforms OpenMPI with UCX on a cluster of AMD GPUs [Shafie Khorassani

et al., 2021]. However, the performance difference may be due to differences in the

MPI implementations, not UCX.

4.4.2 Broader GPU Autonomy

The recent proliferation of GPU-centric communication represents the general trend

toward broader GPU autonomy. Several works, early and recent, have tried to hand

the GPU the reigns of domains that have traditionally been the purview of the

CPU. In an early work, Stuart et al. propose methods that allow the GPU to issue

callbacks to the CPU [Stuart et al., 2010]. Silberstein et al. implement GPUfs,

which allows the GPU to request files on the host CPU directly from inside a GPU

kernel [Silberstein et al., 2014]. Veselý et al. implement support for invoking POSIX

system calls from inside GPU kernels through changes to the Linux kernel [Veselý

et al., 2018]. NVIDIA’s GPUDirect Storage provides a direct data path between

GPUs and storage but still relies on the CPU to orchestrate execution [Thompson

and C.J., 2012]. In a recent work by NVIDIA, Qureshi et al. present BaM, the first
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approach that allows GPUs to directly access storage without any CPU involvement.

Experimental results show that BaM outperforms GPUDirect Storage on several

workloads [Qureshi et al., 2023].

These and other works show a clear trend toward general GPU autonomy. In

line with this, we expect further optimizations to GPU-centric communication. Sev-

eral recent mechanisms are promising, as pointed out by Punniyamurthy et al.

[Punniyamurthy et al., 2023]. First, the recent TB cluster abstraction could ben-

efit device-side communication-computation overlap and inter-TB synchronization

[Evans et al., 2022]. Second, AMD’s recent cache flush instructions allow flush-

ing the cache before initiating network communication, meaning communication no

longer needs to be allocated as uncacheable [Punniyamurthy et al., 2023]. Third,

recent hardware trends like fatter GPU nodes and tight GPU-NIC integration are

also promising [Evans et al., 2022, AMD, 2021]. For example, the most recent it-

eration of NVSwitch will directly connect 256 Grace Hopper Superchips enabling

direct P2P all-to-all communication at an unprecented scale.

4.4.3 Lack of Debugging Support

Efficient debugging tools are essential for productive multi-GPU programming. How-

ever, the available tools are severely lacking when it comes to communication initi-

ated from the GPU. While NVIDIA’s flagship system-level debugging tool, NSight

Systems, provides a detailed view of CPU-initiated communication, it falls short in

providing information on GPU-initiated communication, including Direct Load/S-

tore P2P communication and communication induced by libraries such as NCCL

and NVSHMEM. Although ComScribe can successfully monitor NCCL collective

communication, it is limited to a single node and has usability concerns following

the recent deprecation of nvprof, which it relies on [Soyturk et al., 2021]. We believe

that introducing debugging tools capable of detecting fine-grained GPU-initiated

transfers both within and across nodes is crucial for further advancements in GPU-

centric communication.
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4.5 Summary

In this chapter, we conduct an extensive survey of GPU-centric communication,

communication mechanisms proposed in response to the deficiencies of traditional

multi-GPU communication models. At a high level, these advancements reduce the

CPU’s involvement in the critical path of execution, give the GPU more autonomy in

initiating and synchronizing communication and fix the semantic mismatch between

multi-GPU communication and computation. We chart out the landscape of GPU-

centric communication, summarize the main methods, and expound on their most

salient features, including associated benefits and challenges.

This chapter, in part, is currently being readied for submission for publication.

The thesis author is the primary investigator and author of the material.
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Chapter 5

CONCLUSION

In the first part of this thesis, we propose a fully federated multi-GPU execution

model and show its viability on the widely used Conjugate Gradient solver using

persistent kernels, thread block specialization, device-initiated communication, and

synchronization. By eliminating costly host-side communication and synchroniza-

tion routines and moving the control path to devices completely, we can achieve

significantly reduced communication latencies, allowing better overlap when exe-

cution time is bound by data movement across devices. Our experiments on 8

NVIDIA A100 GPUs showed that the CPU-free model could significantly improve

performance, especially in communication latency-bounded scenarios.

Next, we conduct a comprehensive survey of GPU-centric communication. We

discuss vendor mechanisms that provide primitives that reduce CPU involvement in

the critical path of execution. Next, we shift gears and discuss how these low-level

primitives coalesce into higher-level GPU-centric paradigms. With the apparent

trend toward greater GPU autonomy, we believe that GPU-centric communication

will be even more prominent in future HPC systems.
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